ﻻ يوجد ملخص باللغة العربية
Dark sector may couple to the Standard Model via one or more mediator particles. We discuss two types of mediators: the dark photon $A^{prime}$ and the dark scalar mediator $phi$. The total cross-sections and various differential distributions of the processes $e^{+} e^{-} rightarrow q bar{q} A^{prime}$ and $e^{+} e^{-} rightarrow q bar{q} phi$ ($q=u,~d,~c,~s$ and $b$ quarks) are discussed. We focus on the study of the invisible $A^{prime}$ due to the cleaner background at future $e^{+} e^{-}$ colliders. It is found that the kinematic distributions of the two-jet system could be used to identify (or exclude) the dark photon and the dark scalar mediator, as well as to distinguish between them. We further study the possibility of a search for dark photons at a future CEPC experiment with $sqrt{s}=$ 91.2 GeV and 240 GeV. With CEPC running at $sqrt{s}=$ 91.2 GeV, it would be possible to perform a decisive measurement of the dark photon (20 GeV $< m_{A^{prime}} <$ 60 GeV) in less than one operating year. The lower limits of the integrated luminosity for the significance $S/sqrt{B}=$ 2$sigma$, 3$sigma$ and 5$sigma$ are presented.
In recent years there have been many proposals for new electron-positron colliders, such as the Circular Electron-Positron Collider, the International Linear Collider, and the Future Circular Collider in electron-positron mode. Much of the motivation
We study associated Higgs production with a photon at electron-positron colliders, $e^+e^-to hgamma$, in various extended Higgs models, such as the inert doublet model (IDM), the inert triplet model (ITM) and the two Higgs doublet model (THDM). The c
An electron-positron linear collider in the energy range between 500 and 1000 GeV is of crucial importance to precisely test the Standard Model and to explore the physics beyond it. The physics program is complementary to that of the Large Hadron Col
We investigate the prospects for discovering axion-like particles (ALPs) via a light-by-light (LBL) scattering at two colliders, the future circular collider (FCC-ee) and circular electron-positron collider (CEPC). The protexttt{mi}sing sensitivities
Flavor symmetries are useful to realize fermion flavor structures in the standard model. In particular, discrete $A_4$ symmetry is used to realize lepton flavor structures, and some scalars which are called flavon are introduced to break this symmetr