ترغب بنشر مسار تعليمي؟ اضغط هنا

Game-theoretic Modeling of Traffic in Unsignalized Intersection Network for Autonomous Vehicle Control Verification and Validation

148   0   0.0 ( 0 )
 نشر من قبل Ran Tian
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For a foreseeable future, autonomous vehicles (AVs) will operate in traffic together with human-driven vehicles. Their planning and control systems need extensive testing, including early-stage testing in simulations where the interactions among autonomous/human-driven vehicles are represented. Motivated by the need for such simulation tools, we propose a game-theoretic approach to modeling vehicle interactions, in particular, for urban traffic environments with unsignalized intersections. We develop traffic models with heterogeneous (in terms of their driving styles) and interactive vehicles based on our proposed approach, and use them for virtual testing, evaluation, and calibration of AV control systems. For illustration, we consider two AV control approaches, analyze their characteristics and performance based on the simulation results with our developed traffic models, and optimize the parameters of one of them.



قيم البحث

اقرأ أيضاً

Autonomous driving has been the subject of increased interest in recent years both in industry and in academia. Serious efforts are being pursued to address legal, technical and logistical problems and make autonomous cars a viable option for everyda y transportation. One significant challenge is the time and effort required for the verification and validation of the decision and control algorithms employed in these vehicles to ensure a safe and comfortable driving experience. Hundreds of thousands of miles of driving tests are required to achieve a well calibrated control system that is capable of operating an autonomous vehicle in an uncertain traffic environment where multiple interactions between vehicles and drivers simultaneously occur. Traffic simulators where these interactions can be modeled and represented with reasonable fidelity can help decrease the time and effort necessary for the development of the autonomous driving control algorithms by providing a venue where acceptable initial control calibrations can be achieved quickly and safely before actual road tests. In this paper, we present a game theoretic traffic model that can be used to 1) test and compare various autonomous vehicle decision and control systems and 2) calibrate the parameters of an existing control system. We demonstrate two example case studies, where, in the first case, we test and quantitatively compare two autonomous vehicle control systems in terms of their safety and performance, and, in the second case, we optimize the parameters of an autonomous vehicle control system, utilizing the proposed traffic model and simulation environment.
We propose a safe DRL approach for autonomous vehicle (AV) navigation through crowds of pedestrians while making a left turn at an unsignalized intersection. Our method uses two long-short term memory (LSTM) models that are trained to generate the pe rceived state of the environment and the future trajectories of pedestrians given noisy observations of their movement. A future collision prediction algorithm based on the future trajectories of the ego vehicle and pedestrians is used to mask unsafe actions if the system predicts a collision. The performance of our approach is evaluated in two experiments using the high-fidelity CARLA simulation environment. The first experiment tests the performance of our method at intersections that are similar to the training intersection and the second experiment tests our method at intersections with a different topology. For both experiments, our methods do not result in a collision with a pedestrian while still navigating the intersection at a reasonable speed.
Prior research has extensively explored Autonomous Vehicle (AV) navigation in the presence of other vehicles, however, navigation among pedestrians, who are the most vulnerable element in urban environments, has been less examined. This paper explore s AV navigation in crowded, unsignalized intersections. We compare the performance of different deep reinforcement learning methods trained on our reward function and state representation. The performance of these methods and a standard rule-based approach were evaluated in two ways, first at the unsignalized intersection on which the methods were trained, and secondly at an unknown unsignalized intersection with a different topology. For both scenarios, the rule-based method achieves less than 40% collision-free episodes, whereas our methods result in a performance of approximately 100%. Of the three methods used, DDQN/PER outperforms the other two methods while it also shows the smallest average intersection crossing time, the greatest average speed, and the greatest distance from the closest pedestrian.
In autonomous driving, using a variety of sensors to recognize preceding vehicles in middle and long distance is helpful for improving driving performance and developing various functions. However, if only LiDAR or camera is used in the recognition s tage, it is difficult to obtain necessary data due to the limitations of each sensor. In this paper, we proposed a method of converting the tracking data of vision into birds eye view (BEV) coordinates using an equation that projects LiDAR points onto an image, and a method of fusion between LiDAR and vision tracked data. Thus, the newly proposed method was effective through the results of detecting closest in-path vehicle (CIPV) in various situations. In addition, even when experimenting with the EuroNCAP autonomous emergency braking (AEB) test protocol using the result of fusion, AEB performance is improved through improved cognitive performance than when using only LiDAR. In experimental results, the performance of the proposed method was proved through actual vehicle tests in various scenarios. Consequently, it is convincing that the newly proposed sensor fusion method significantly improves the ACC function in autonomous maneuvering. We expect that this improvement in perception performance will contribute to improving the overall stability of ACC.
307 - Ran Tian , Sisi Li , Nan Li 2018
In this paper, we propose a decision making algorithm for autonomous vehicle control at a roundabout intersection. The algorithm is based on a game-theoretic model representing the interactions between the ego vehicle and an opponent vehicle, and ada pts to an online estimated driver type of the opponent vehicle. Simulation results are reported.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا