ﻻ يوجد ملخص باللغة العربية
We propose a new class of gravity theories which are characterized by a nontrivial coupling between the gravitational metric and matter mediated by an auxiliary rank-2 tensor. The actions generating the field equations are constructed so that these theories are equivalent to general relativity in a vacuum, and only differ from general relativity theory within a matter distribution. We analyze in detail one of the simplest realizations of these generalized coupling theories. We show that in this case the propagation speed of gravitational radiation in matter is different from its value in vacuum and that this can be used to weakly constrain the (single) additional parameter of the theory. An analysis of the evolution of homogeneous and isotropic spacetimes in the same framework shows that there exist cosmic histories with both an inflationary phase and a dark era characterized by a different expansion rate.
The beyond-generalized Proca theories are the extension of second-order massive vector-tensor theories (dubbed generalized Proca theories) with two transverse vector modes and one longitudinal scalar besides two tensor polarizations. Even with this e
We investigate the cosmological applications of new gravitational scalar-tensor theories, which are novel modifications of gravity possessing 2+2 propagating degrees of freedom, arising from a Lagrangian that includes the Ricci scalar and its first a
We derive the profile of a vector field coupled to matter on a static and spherically symmetric background in the context of generalized Proca theories. The cubic Galileon self-interaction leads to the suppression of a longitudinal vector component d
We study the bounce and cyclicity realization in the framework of new gravitational scalar-tensor theories. In these theories the Lagrangian contains the Ricci scalar and its first and second derivatives, in a specific combination that makes them fre
The generalized Proca theories with second-order equations of motion can be healthily extended to a more general framework in which the number of propagating degrees of freedom remains unchanged. In the presence of a quartic-order nonminimal coupling