ترغب بنشر مسار تعليمي؟ اضغط هنا

Molybdenum Disulphide Nanoflakes Grown by Chemical Vapour Deposition on Graphite: Nucleation, Orientation, and Charge Transfer

77   0   0.0 ( 0 )
 نشر من قبل Marika Schleberger Y
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional molybdenum disulphide on graphene grown by chemical vapour deposition is a promising van der Waals system for applications in optoelectronics and catalysis. To extend the fundamental understanding of growth and intrinsic properties of molybdenum disulphide on graphene, molybdenum disulphide on highly oriented pyrolytic graphite is a suitable model system. Here we show, experimentally and by density-functional-theory calculations, that molybdenum disulphide flakes grow in two orientations. One of the orientations is energetically preferred, the other one is rotated by 30 degree. Because of a high energy barrier confirmed by our calculations both orientations are stable at room temperature and their switching can only be forced by external stimuli, i.e. by a scanning tunneling microscope tip. Combined Kelvin probe microscopy and Raman spectroscopy measurements show that the flakes with a typical size of a few hundred nanometers are less doped than the often studied exfoliated molybdenum disulphide single layer.



قيم البحث

اقرأ أيضاً

Layered transition metal dichalcogenides display a wide range of attractive physical and chemical properties and are potentially important for various device applications. Here we report the electronic transport and device properties of monolayer mol ybdenum disulphide (MoS2) grown by chemical vapour deposition (CVD). We show that these devices have the potential to suppress short channel effects and have high critical breakdown electric field. However, our study reveals that the electronic properties of these devices are at present, severely limited by the presence of a significant amount of band tail trapping states. Through capacitance and ac conductance measurements, we systematically quantify the density-of-states and response time of these states. Due to the large amount of trapped charges, the measured effective mobility also leads to a large underestimation of the true band mobility and the potential of the material. Continual engineering efforts on improving the sample quality are needed for its potential applications.
Molybdenum disulfide (MoS2) is a particularly interesting member of the family of two-dimensional (2D) materials due to its semiconducting and tunable electronic properties. Currently, the most reliable method for obtaining high-quality industrial sc ale amounts of 2D materials is chemical vapor deposition (CVD), which results in polycrystalline samples. As grain boundaries (GBs) are intrinsic defect lines within CVD-grown 2D materials, their atomic structure is of paramount importance. Here, through atomic-scale analysis of micrometer-long GBs, we show that covalently bound boundaries in 2D MoS2 tend to be decorated by nanopores. Such boundaries occur when differently oriented MoS2 grains merge during growth, whereas the overlap of grains leads to boundaries with bilayer areas. Our results suggest that the nanopore formation is related to stress release in areas with a high concentration of dislocation cores at the grain boundaries, and that the interlayer interaction leads to intrinsic rippling at the overlap regions. This provides insights for the controlled fabrication of large-scale MoS 2 samples with desired structural properties for applications.
Chromia (Cr2O3) has been extensively explored for the purpose of developing widespread industrial applications, owing to the convergence of a variety of mechanical, physical and chemical properties in one single oxide material. Various methods have b een used for large area synthesis of Cr2O3 films. However, for selective area growth and growth on thermally sensitive materials, laser-assisted chemical vapour deposition (LCVD) can be applied advantageously. Here we report on the growth of single layers of pure Cr2O3 onto sapphire substrates at room temperature by low pressure photolytic LCVD, using UV laser radiation and Cr(CO)6 as chromium precursor. The feasibility of the LCVD technique to access selective area deposition of chromia thin films is demonstrated. Best results were obtained for a laser fluence of 120 mJ cm-2 and a partial pressure ratio of O2 to Cr(CO)6 of 1.0. Samples grown with these experimental parameters are polycrystalline and their microstructure is characterised by a high density of particles whose size follows a lognormal distribution. Deposition rates of 0.1 nm s-1 and mean particle sizes of 1.85 {mu}m were measured for these films.
We report that graphene films with thickness ranging from 1 to 7 layers can be controllably synthesized on the surface of polycrystalline copper by a chemical vapour deposition method. The number of layers of graphene is controlled precisely by regul ating the flow ratio of CH4 and H2, the reaction pressure, the temperature and the reaction time. The synthesized graphene films were characterized by scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, X-ray diffraction and Raman spectroscopy. In addition, the graphene films transferred from copper to other substrates are found to have a good optical transmittance that makes them suitable for transparent conductive materials.
133 - K. Chen , M. Veldhorst , C.H. Lee 2011
A Hybrid Physical-Chemical Vapour Deposition (HPCVD) system consisting of separately controlled Mg-source heater and substrate heater is used to grow MgB2 thin films and thick films at various temperatures. We are able to grow superconducting MgB2 th in films at temperatures as low as 350 C with a Tc0 of 35.5 K. MgB2 films up to 4 um in thickness grown at 550 C have Jc over 10E6 A/cm2 at 5 K and zero applied field. The low deposition temperature of MgB2 films is desirable for all-MgB2 tunnel junctions and MgB2 thick films are important for applications in coated conductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا