ترغب بنشر مسار تعليمي؟ اضغط هنا

Four-particle scattering amplitudes in QCD at NNLO to higher orders in the dimensional regulator

79   0   0.0 ( 0 )
 نشر من قبل Bernhard Mistlberger
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute all helicity amplitudes for four-particle scattering in massless QCD with $n_f$ fermion flavours to next-to-next-to-leading order (NNLO) in perturbation theory. In particular, we consider all possible configurations of external quarks and gluons. We evaluate the amplitudes in terms of a Laurent series in the dimensional regulator to the order required for future next-to-next-to-next-to-leading order (N$^3$LO) calculations. The coefficients of the Laurent series are given in terms of harmonic polylogarithms that can readily be evaluated numerically. We present our findings in the conventional dimensional regularisation and in the tHooft-Veltman schemes.



قيم البحث

اقرأ أيضاً

75 - Vittorio Del Duca 2017
We analyse the high-energy limit of the gluon-gluon scattering amplitude in QCD, and display an intriguing relation between the finite parts of the one-loop gluon impact factor and the finite parts of the two-loop Regge trajectory.
We review the current state-of-the-art in integrand level reduction for five-point scattering amplitudes at two loops in QCD. We present some benchmark results for the evaluation of the leading colour two-loop five-gluon amplitudes in the physical re gion as well as the partonic channels for two quarks and three gluons and four quarks and one gluon.
Subtraction schemes provide a systematic way to compute fully-differential cross sections beyond the leading order in the strong coupling constant. These methods make singular real-emission corrections integrable in phase space by the addition of sui table counterterms. Such counterterms may be defined using momentum mappings, which are parametrisations of the phase space that factorise the variables that describe the particles becoming unresolved in some infrared or collinear limit from the variables that describe an on-shell phase space for the resolved particles. In this work, we review existing momentum mappings in a unified framework and introduce new ones for final-collinear and soft counterterms. The new mappings work in the presence of massive particles and with an arbitrary number of soft particles or of clusters of collinear particles, making them fit for subtraction methods at any order in perturbation theory. The new mapping for final-collinear counterterms is also used to elucidate relations among existing final-collinear mappings.
We establish a simple formula for the minimal dimension of operators leading to any helicity amplitude. It eases the systematic enumeration of independent operators from the construction of massless non-factorizable on-shell amplitudes. Little-group constraints can then be solved algorithmically for each helicity configuration to extract a complete set of spinor structures with lowest dimension. Occasionally, further reduction using momentum conservation, on-shell conditions and Schouten identities is required. A systematic procedure to account for the latter is presented. Dressing spinor structures with dot products of momenta finally yields the independent Lorentz structures for each helicity amplitude. We apply these procedures to amplitudes involving particles of spins 0,1/2,1,2. Spin statistics and elementary selection rules due to gauge symmetry lead to an enumeration of operators involving gravitons and standard-model particles, in the effective field theory denoted GRSMEFT. We also list the independent spinor structures generated by operators involving standard-model particles only. In both cases, we cover operators of dimension up to eight.
163 - R. Albuquerque 2018
We review our results in Refs.[1,2] for the masses and couplings of heavy-light DD(BB)-like molecules and (Qq)(Qq)-like four-quark states from relativistic QCD Laplace sum rules (LSR) where next-to-next-to-leading order (N2LO) PT corrections in the c hiral limit, next-to-leading order (NLO) SU3 PT corrections and non-perturbative contributions up to dimension d=6-8 are included. The factorization properties of molecule and four-quark currents have been used for the estimate of the higher order PT corrections. New integrated compact expressions of the spectral functions at leading order (LO) of perturbative QCD and up to dimensions d< (6 - 8) non-perturbative condensates are presented. The results are summarized in Tables 5 to 10, from which we conclude, within the errors, that the observed XZ states are good candidates for being 1^{++} and 0^{++} molecules or/and four-quark states, contrary to the observed Y states which are too light compared to the predicted 1^{-pm} and 0^{-pm} states. We find that the SU3 breakings are relatively small for the masses (< 10(resp. 3)%) for the charm (resp. bottom) channels while they are large (< 20%) for the couplings which decrease faster (1/m_{b}^{3/2}) than 1/m_{b}^{1/2} of HQET. QCD spectral sum rules (QSSR) approach cannot clearly separate (within the errors) molecules from four-quark states having the same quantum numbers. Results for the BK (DK)-like molecules and (Qq)(us)-like four-quark states from [3] are also reviewed which do not favour the molecule or/and four-quark interpretation of the X(5568). We suggest to scan the charm (2327 ~ 2444) MeV and bottom (5173 ~ 5226) MeV regions for detecting the (unmixed)(cu)ds and (bu)ds states. We expect that future experimental data and lattice results will check our predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا