ﻻ يوجد ملخص باللغة العربية
We study in this paper the general properties of a many body system of fermions in arbitrary dimensions assuming that the {em momentum} of individual fermions are good quantum numbers of the system. We call these systems $k$-Fermi liquids. We show how Fermi liquid, Luttinger liquid (or Fermi liquid with exclusion statistics) and spin-charge separation arises from this framework. Two exactly solvable $k$-Fermi liquid models with spin-charge separation are discussed as examples.
An introductory survey of the theoretical ideas and calculations and the experimental results which depart from Landau Fermi-liquids is presented. Common themes and possible routes to the singularities leading to the breakdown of Landau Fermi liquids
We propose in this paper an effective low-energy theory for interacting fermion systems which supports exclusion statistics. The theory can be viewed as an extension of Landau Fermi liquid theory where besides quasi-particle energy $xi_{mathbf{k}}$,
A system with charge conservation and lattice translation symmetry has a well-defined filling $ u$, which is a real number representing the average charge per unit cell. We show that if $ u$ is fractional (i.e. not an integer), this imposes very stro
We present the detailed formalism of the extremely correlated Fermi liquid theory, developed for treating the physics of the t-J model. We start from the exact Schwinger equation of motion for the Greens function for projected electrons, and develop
We describe an analytical theory investigating the regime of validity of the Fermi liquid theory in interacting, via the long-range Coulomb coupling, two-dimensional Fermi systems comparing it with with the corresponding 3D systems. We find that the