ﻻ يوجد ملخص باللغة العربية
Quantum error correcting codes with finite-dimensional Hilbert spaces have yielded new insights on bulk reconstruction in AdS/CFT. In this paper, we give an explicit construction of a quantum error correcting code where the code and physical Hilbert spaces are infinite-dimensional. We define a von Neumann algebra of type II$_1$ acting on the code Hilbert space and show how it is mapped to a von Neumann algebra of type II$_1$ acting on the physical Hilbert space. This toy model demonstrates the equivalence of entanglement wedge reconstruction and the exact equality of bulk and boundary relative entropies in infinite-dimensional Hilbert spaces.
We construct an infinite-dimensional analog of the HaPPY code as a growing series of stabilizer codes defined respective to their Hilbert spaces. The Hilbert spaces are related by isometric maps, which we define explicitly. We construct a Hamiltonian
We give a general construction of a setup that verifies bulk reconstruction, conservation of relative entropies, and equality of modular flows between the bulk and the boundary, for infinite-dimensional systems with operator-pushing. In our setup, a
A breakthrough took place in the von Neumann algebra theory when the Tomita-Takesaki theory was established around 1970. Since then, many important issues in the theory were developed through 1970s by Araki, Connes, Haagerup, Takesaki and others, whi
In the holographic correspondence, subregion duality posits that knowledge of the mixed state of a finite spacelike region of the boundary theory allows full reconstruction of a specific region of the bulk, known as the entanglement wedge. This state
The notion of index for inclusions of von Neumann algebras goes back to a seminal work of Jones on subfactors of type ${I!I}_1$. In the absence of a trace, one can still define the index of a conditional expectation associated to a subfactor and look