ﻻ يوجد ملخص باللغة العربية
Cosmic rays are charged particles whose flux observed at Earth shows temporal variations related to space weather phenomena and may be an important tool to study them. The cosmic ray intensity recorded with ground-based detectors also shows temporal variations arising from atmospheric variations. In the case of muon detectors, the main atmospheric effects are related to pressure and temperature changes. In this work, we analyze both effects using data recorded by the Global Muon Detector Network (GMDN), consisting of four multidirectional muon detectors at different locations, in the period between 2007 and 2016. For each GMDN directional channel, we obtain coefficients that describe the pressure and temperature effects. We then analyze how these coefficients can be related to the geomagnetic cutoff rigidity and zenith angle associated with cosmic-ray particles observed by each channel. In the pressure effect analysis, we found that the observed barometric coefficients show a very clear logarithmic correlation with the cutoff rigidity divided by the zenith angle cosine. On the other hand, the temperature coefficients show a good logarithmic correlation with the product of the cutoff and zenith angle cosine after adding a term proportional to the sine of geographical latitude of the observation site. This additional term implies that the temperature effect measured in the northern hemisphere detectors is stronger than that observed in the southern hemisphere. The physical origin of this term and of the good correlations found in this analysis should be studied in detail in future works.
We report the timing and spatial resolution from the Muon Telescope Detector (MTD) installed in the STAR experiment at RHIC. Cosmic ray muons traversing the STAR detector have an average transverse momentum of 6 GeV/c. Due to their very small multipl
High-energy neutrinos, arising from decays of mesons produced through the collisions of cosmic ray particles with air nuclei, form the background in the astrophysical neutrino detection problem. An ambiguity in high-energy behavior of pion and especi
We demonstrate that global observations of high-energy cosmic rays contribute to understanding unique characteristics of a large-scale magnetic flux rope causing a magnetic storm in August 2018. Following a weak interplanetary shock on 25 August 2018
We present a new one-dimensional calculation of low and intermediate energy atmospheric muon and neutrino fluxes, using up-to-date data on primary cosmic rays and hadronic interactions. The existing agreement between calculated muon fluxes and the da
It has been claimed by others that observed temporal correlations of terrestrial cloud cover with `the cosmic ray intensity are causal. The possibility arises, therefore, of a connection between cosmic rays and Global Warming. If true, the implicatio