ترغب بنشر مسار تعليمي؟ اضغط هنا

Functional renormalization group approach and gauge dependence in gravity theories

58   0   0.0 ( 0 )
 نشر من قبل Vitor Barra
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the gauge symmetry and gauge fixing dependence properties of the effective average action for quantum gravity models of general form. Using the background field formalism and the standard BRST-based arguments, one can establish the special class of regulator functions that preserves the background field symmetry of the effective average action. Unfortunately, regardless the gauge symmetry is preserved at the quantum level, the non-invariance of the regulator action under the global BRST transformations leads to the gauge fixing dependence even under the use of the on-shell conditions.



قيم البحث

اقرأ أيضاً

61 - Peter M. Lavrov 2020
The gauge dependence problem of alternative flow equation for the functional renormalization group is studied. It is shown that the effective two-particle irreducible effective action depends on gauges at any value of IR parameter $k$. The situation with gauge dependence is similar to the standard formulation based on the effective one-particle irreducible effective action.
As an extension of the weak perturbation theory obtained in recent analysis on infinite-derivative non-local non-Abelian gauge theories motivated from p-adic string field theory, and postulated as direction of UV-completion in 4-D Quantum Field Theor y (QFT), here we investigate the confinement conditions and $beta-$function in the strong coupling regime. We extend the confinement criterion, previously obtained by Kugo and Ojima for the local theory based on the Becchi-Rouet-Stora-Tyutin (BRST) invariance, to the non-local theory, by using a set of exact solutions of the corresponding local theory. We show that the infinite-derivatives which are active in the UV provides finite contributions also in the infrared (IR) limit and provide a proof of confinement, granted by the absence of the Landau pole. The main difference with the local case is that the IR fixed point is moved to infinity. We also show that in the limit of the energy scale of non-locality $M rightarrow infty$ we reproduce the local theory results and see how asymptotic freedom is properly recovered.
Pure gauge theories for de Sitter, anti de Sitter and orthogonal groups, in four-dimensional Euclidean spacetime, are studied. It is shown that, if the theory is asymptotically free and a dynamical mass is generated, then an effective geometry may be induced and a gravity theory emerges.
The effective action in quantum general relativity is strongly dependent on the gauge-fixing and parametrization of the quantum metric. As a consequence, in the effective approach to quantum gravity, there is no possibility to introduce the renormali zation-group framework in a consistent way. On the other hand, the version of effective action proposed by Vilkovisky and DeWitt does not depend on the gauge-fixing and parametrization off-shell, opening the way to explore the running of the cosmological and Newton constants as well as the coefficients of the higher-derivative terms of the total action. We argue that in the effective framework the one-loop beta functions for the zero-, two- and four-derivative terms can be regarded as exact, that means, free from corrections coming from the higher loops. In this perspective, the running describes the renormalization group flow between the present-day Hubble scale in the IR and the Planck scale in the UV.
We discuss the possibility of a class of gauge theories, in four Euclidean dimensions, to describe gravity at quantum level. The requirement is that, at low energies, these theories can be identified with gravity as a geometrodynamical theory. Specif ically, we deal with de Sitter-type groups and show that a Riemann-Cartan first order gravity emerges. An analogy with quantum chromodynamics is also formulated. Under this analogy it is possible to associate a soft BRST breaking to a continuous deformation between both sectors of the theory, namely, ultraviolet and infrared. Moreover, instead of hadrons and glueballs, the physical observables are identified with the geometric properties of spacetime. Furthermore, Newton and cosmological constants can be determined from the dynamical content of the theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا