ﻻ يوجد ملخص باللغة العربية
We investigate the gauge symmetry and gauge fixing dependence properties of the effective average action for quantum gravity models of general form. Using the background field formalism and the standard BRST-based arguments, one can establish the special class of regulator functions that preserves the background field symmetry of the effective average action. Unfortunately, regardless the gauge symmetry is preserved at the quantum level, the non-invariance of the regulator action under the global BRST transformations leads to the gauge fixing dependence even under the use of the on-shell conditions.
The gauge dependence problem of alternative flow equation for the functional renormalization group is studied. It is shown that the effective two-particle irreducible effective action depends on gauges at any value of IR parameter $k$. The situation
As an extension of the weak perturbation theory obtained in recent analysis on infinite-derivative non-local non-Abelian gauge theories motivated from p-adic string field theory, and postulated as direction of UV-completion in 4-D Quantum Field Theor
Pure gauge theories for de Sitter, anti de Sitter and orthogonal groups, in four-dimensional Euclidean spacetime, are studied. It is shown that, if the theory is asymptotically free and a dynamical mass is generated, then an effective geometry may be induced and a gravity theory emerges.
The effective action in quantum general relativity is strongly dependent on the gauge-fixing and parametrization of the quantum metric. As a consequence, in the effective approach to quantum gravity, there is no possibility to introduce the renormali
We discuss the possibility of a class of gauge theories, in four Euclidean dimensions, to describe gravity at quantum level. The requirement is that, at low energies, these theories can be identified with gravity as a geometrodynamical theory. Specif