ﻻ يوجد ملخص باللغة العربية
In this work we prove the existence of standing-wave solutions to the scalar non-linear Klein-Gordon equation in dimension one and the stability of the ground-state, the set which contains all the minima of the energy constrained to the manifold of the states sharing a fixed charge. For non-linearities which are combinations of two competing powers we prove that standing-waves in the ground-state are orbitally stable. We also show the existence of a degenerate minimum and the existence of two positive and radially symmetric minima having the same charge.
We consider a system of two coupled non-linear Klein-Gordon equations. We show the existence of standing waves solutions and the existence of a Lyapunov function for the ground state.
We consider the nonlinear Klein-Gordon equation in $R^d$. We call multi-solitary waves a solution behaving at large time as a sum of boosted standing waves. Our main result is the existence of such multi-solitary waves, provided the composing boosted
The global attraction is proved for the nonlinear 3D Klein-Gordon equation with a nonlinearity concentrated at one point. Our main result is the convergence of each finite energy solution to the manifold of all solitary waves as $ttopminfty$. This gl
We investigate the orbital stability and instability of standing waves for two classes of Klein-Gordon equations in the semi-classical regime.
We consider the nonlinear damped Klein-Gordon equation [ partial_{tt}u+2alphapartial_{t}u-Delta u+u-|u|^{p-1}u=0 quad text{on} [0,infty)times mathbb{R}^N ] with $alpha>0$, $2 le Nle 5$ and energy subcritical exponents $p>2$. We study the behavior o