ترغب بنشر مسار تعليمي؟ اضغط هنا

Compensation-Free High-Capacity Free-Space Optical Communication Using Turbulence-Resilient Vector Beams

135   0   0.0 ( 0 )
 نشر من قبل Zhimin Shi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Free-space optical communication is a promising means to establish versatile, secure and high-bandwidth communication for many critical point-to-point applications. While the spatial modes of light offer an additional degree of freedom to increase the information capacity of an optical link, atmospheric turbulence can introduce severe distortion to the spatial modes and lead to data degradation. Here, we propose and demonstrate a vector-beam-based, turbulence-resilient communication protocol, namely spatial polarization differential phase shift keying (SPDPSK), that can encode a large number of information levels using orthogonal spatial polarization states of light. We show experimentally that the spatial polarization profiles of the vector modes are resilient to atmospheric turbulence, and therefore can reliably transmit high-dimensional information through a turbid channel without the need of any adaptive optics for beam compensation. We construct a proof-of-principle experiment with a controllable turbulence cell. Using 34 vector modes, we have measured a channel capacity of 4.84 bits per pulse (corresponding to a data error rate of 4.3%) through a turbulent channel with a scintillation index larger than 1. Our SPDPSK protocol can also effectively transmit 4.02 bits of information per pulse using 18 vector modes through even stronger turbulence with a scintillation index of 1.54. Our study provides direct experimental evidence on how the spatial polarization profiles of vector beams are resilient to atmospheric turbulence and paves the way towards practical, high-capacity, free-space communication solutions with robust performance under harsh turbulent environments.



قيم البحث

اقرأ أيضاً

In our continuous variable quantum key distribution (QKD) scheme, the homodyne detection set-up requires balancing the intensity of an incident beam between two photodiodes. Realistic lens systems are insufficient to provide a spatially stable focus in the presence of large spatial beam-jitter caused by atmospheric transmission. We therefore present an improved geometry for optical tapers which offer up to four times the angular tolerance of a lens. The effective area of a photodiode can thus be increased, without decreasing its bandwidth. This makes them suitable for use in our free space QKD experiment and in free space optical communication in general.
Atmospheric turbulence generally limits free-space optical (FSO) communications, and this problem is severely exacerbated when implementing highly sensitive and spectrally efficient coherent detection. Specifically, turbulence induces power coupling from the transmitted Gaussian mode to higher-order Laguerre-Gaussian (LG) modes, resulting in a significant decrease of the power that mixes with a single-mode local oscillator (LO). Instead, we transmit a frequency-offset Gaussian pilot tone along with the data signal, such that both experience similar turbulence and modal power coupling. Subsequently, the photodetector (PD) optoelectronically mixes all corresponding pairs of the beams modes. During mixing, a conjugate of the turbulence experienced by the pilot tone is automatically generated and compensates the turbulence experienced by the data, and nearly all orders of the same corresponding modes efficiently mix. We demonstrate a 12-Gbit/s 16-quadrature-amplitude-modulation (16-QAM) polarization-multiplexed (PolM) FSO link that exhibits resilience to emulated turbulence. Experimental results for turbulence D/r_0~5.5 show up to ~20 dB reduction in the mixing power loss over a conventional coherent receiver. Therefore, our approach automatically recovers nearly all the captured data power to enable high-performance coherent FSO systems.
It is observed that a constant unit vector denoted by $mathbf I$ is needed to characterize a complete orthonormal set of vector diffraction-free beams. The previously found diffraction-free beams are shown to be included as special cases. The $mathbf I$-dependence of the longitudinal component of diffraction-free beams is also discussed.
Diffraction-free optical beams propagate freely without change in shape and scale. Monochromatic beams that avoid diffractive spreading require two-dimensional transverse profiles, and there are no corresponding solutions for profiles restricted to o ne transverse dimension. Here, we demonstrate that the temporal degree of freedom can be exploited to efficiently synthesize one-dimensional pulsed optical sheets that propagate self-similarly in free space. By introducing programmable conical (hyperbolic, parabolic, or elliptical) spectral correlations between the beams spatio-temporal degrees of freedom, a continuum of families of axially invariant pulsed localized beams is generated. The spectral loci of such beams are the reduced-dimensionality trajectories at the intersection of the light-cone with spatio-temporal spectral planes. Far from being exceptional, self-similar axial propagation is a generic feature of fields whose spatial and temporal degrees of freedom are tightly correlated. These one-dimensional `space-time beams can be useful in optical sheet microscopy, nonlinear spectroscopy, and non-contact measurements.
211 - Chun-Fang Li 2007
A unified description of the free-space cylindrical vector beams is presented, which is an integral transformation solution to the vector Helmholtz equation and the transversality condition. The amplitude 2-form of the angular spectrum involved in th is solution can be arbitrarily chosen. When one of the two elements is zero, we arrive at either transverse-electric or transverse-magnetic beam mode. In the paraxial condition, this solution not only includes the known $J_1$ Bessel-Gaussian vector beam and the axisymmetric Laguerre-Gaussian vector beam that were obtained by solving the paraxial wave equations, but also predicts two new kinds of vector beam, called the modified-Bessel-Gaussian vector beam.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا