ترغب بنشر مسار تعليمي؟ اضغط هنا

The Holographic Landscape of Symmetric Product Orbifolds

151   0   0.0 ( 0 )
 نشر من قبل Beatrix M\\\"uhlmann
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the growth of coefficients in the elliptic genus of symmetric product orbifolds at large central charge. We find that this landscape decomposes into two regions. In one region, the growth of the low energy states is Hagedorn, which indicates a stringy dual. In the other, the growth is much slower, and compatible with the spectrum of a supergravity theory on AdS$_3$. We provide a simple diagnostic which places any symmetric product orbifold in either region. We construct a class of elliptic genera with such supergravity-like growth, indicating the possible existence of new realizations of AdS$_3$/CFT$_2$ where the bulk is a semi-classical supergravity theory. In such cases, we give exact expressions for the BPS degeneracies, which could be matched with the spectrum of perturbative states in a dual supergravity description.

قيم البحث

اقرأ أيضاً

We study the spectrum of permutation orbifolds of 2d CFTs. We find examples where the light spectrum grows faster than Hagedorn, which is different from known cases such as symmetric orbifolds. We also describe how to compute their partition functions using a generalization of Hecke operators.
We investigate gauge anomalies in the context of orbifold conformal field theories. Such anomalies manifest as failures of modular invariance in the constituents of the orbifold partition function. We review how this irregularity is classified by coh omology and how extending the orbifold group can remove it. Working with such extensions requires an understanding of the consistent ways in which extending groups can act on the twisted states of the original symmetry, which leads us to a discrete-torsion like choice that exists in orbifolds with trivially-acting subgroups. We review a general method for constructing such extensions and investigate its application to orbifolds. Through numerous explicit examples we test the conjecture that consistent extensions should be equivalent to (in general multiple copies of) orbifolds by non-anomalous subgroups.
125 - M. Maio , A.N. Schellekens 2011
We study orbifolds by permutations of two identical N=2 minimal models within the Gepner construction of four dimensional heterotic strings. This is done using the new N=2 supersymmetric permutation orbifold building blocks we have recently developed . We compare our results with the old method of modding out the full string partition function. The overlap between these two approaches is surprisingly small, but whenever a comparison can be made we find complete agreement. The use of permutation building blocks allows us to use the complete arsenal of simple current techniques that is available for standard Gepner models, vastly extending what could previously be done for permutation orbifolds. In particular, we consider (0,2) models, breaking of SO(10) to subgroups, weight-lifting for the minimal models and B-L lifting. Some previously observed phenomena, for example concerning family number quantization, extend to this new class as well, and in the lifted models three family models occur with abundance comparable to two or four.
This paper describes a generalization of decomposition in orbifolds. In general terms, decomposition states that two-dimensional orbifolds and gauge theories whose gauge groups have trivially-acting subgroups decompose into disjoint unions of theorie s. However, decomposition can be, at least naively, broken in orbifolds if the orbifold has discrete torsion in the trivially-acting subgroup. (Formally, this breaks finite global one-form symmetries.) Nevertheless, even in such cases, one still sees rudiments of decomposition. In this paper, we generalize decomposition in orbifolds to include such examples of discrete torsion, which we check in numerous examples. Our analysis includes as special cases (and in one sense generalizes) quantum symmetries of abelian orbifolds.
The aim of this paper is to study orientifolds of c=1 conformal field theories. A systematic analysis of the allowed orientifold projections for c=1 orbifold conformal field theories is given. We compare the Klein bottle amplitudes obtained at ration al points with the orientifold projections that we claim to be consistent for any value of the orbifold radius. We show that the recently obtained Klein bottle amplitudes corresponding to exceptional modular invariants, describing bosonic string theories at fractional square radius, are also in agreement with those orientifold projections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا