ترغب بنشر مسار تعليمي؟ اضغط هنا

DeCaf: Diagnosing and Triaging Performance Issues in Large-Scale Cloud Services

268   0   0.0 ( 0 )
 نشر من قبل Chetan Bansal
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Large scale cloud services use Key Performance Indicators (KPIs) for tracking and monitoring performance. They usually have Service Level Objectives (SLOs) baked into the customer agreements which are tied to these KPIs. Dependency failures, code bugs, infrastructure failures, and other problems can cause performance regressions. It is critical to minimize the time and manual effort in diagnosing and triaging such issues to reduce customer impact. Large volume of logs and mixed type of attributes (categorical, continuous) in the logs makes diagnosis of regressions non-trivial. In this paper, we present the design, implementation and experience from building and deploying DeCaf, a system for automated diagnosis and triaging of KPI issues using service logs. It uses machine learning along with pattern mining to help service owners automatically root cause and triage performance issues. We present the learnings and results from case studies on two large scale cloud services in Microsoft where DeCaf successfully diagnosed 10 known and 31 unknown issues. DeCaf also automatically triages the identified issues by leveraging historical data. Our key insights are that for any such diagnosis tool to be effective in practice, it should a) scale to large volumes of service logs and attributes, b) support different types of KPIs and ranking functions, c) be integrated into the DevOps processes.



قيم البحث

اقرأ أيضاً

In-app advertising closely relates to app revenue. Reckless ad integration could adversely impact app reliability and user experience, leading to loss of income. It is very challenging to balance the ad revenue and user experience for app developers. In this paper, we present a large-scale analysis on ad-related user feedback. The large user feedback data from App Store and Google Play allow us to summarize ad-related app issues comprehensively and thus provide practical ad integration strategies for developers. We first define common ad issues by manually labeling a statistically representative sample of ad-related feedback, and then build an automatic classifier to categorize ad-related feedback. We study the relations between different ad issues and user ratings to identify the ad issues poorly scored by users. We also explore the fix durations of ad issues across platforms for extracting insights into prioritizing ad issues for ad maintenance. We summarize 15 types of ad issues by manually annotating 903/36,309 ad-related user reviews. From a statistical analysis of 36,309 ad-related reviews, we find that users care most about the number of unique ads and ad display frequency during usage. Besides, users tend to give relatively lower ratings when they report the security and notification related issues. Regarding different platforms, we observe that the distributions of ad issues are significantly different between App Store and Google Play. Moreover, some ad issue types are addressed more quickly by developers than other ad issues. We believe the findings we discovered can benefit app developers towards balancing ad revenue and user experience while ensuring app reliability.
As dataset sizes increase, data analysis tasks in high performance computing (HPC) are increasingly dependent on sophisticated dataflows and out-of-core methods for efficient system utilization. In addition, as HPC systems grow, memory access and dat a sharing are becoming performance bottlenecks. Cloud computing employs a data processing paradigm typically built on a loosely connected group of low-cost computing nodes without relying upon shared storage and/or memory. Apache Spark is a popular engine for large-scale data analysis in the cloud, which we have successfully deployed via job submission scripts on production clusters. In this paper, we describe common parallel analysis dataflows for both Message Passing Interface (MPI) and cloud based applications. We developed an effective benchmark to measure the performance characteristics of these tasks using both types of systems, specifically comparing MPI/C-based analyses with Spark. The benchmark is a data processing pipeline representative of a typical analytics framework implemented using map-reduce. In the case of Spark, we also consider whether language plays a role by writing tests using both Python and Scala, a language built on the Java Virtual Machine (JVM). We include performance results from two large systems at Argonne National Laboratory including Theta, a Cray XC40 supercomputer on which our experiments run with 65,536 cores (1024 nodes with 64 cores each). The results of our experiments are discussed in the context of their applicability to future HPC architectures. Beyond understanding performance, our work demonstrates that technologies such as Spark, while typically aimed at multi-tenant cloud-based environments, show promise for data analysis needs in a traditional clustering/supercomputing environment.
Computer simulations have become a very powerful tool for scientific research. In order to facilitate research in computational biology, the BioDynaMo project aims at a general platform for biological computer simulations, which should be executable on hybrid cloud computing systems. This paper describes challenges and lessons learnt during the early stages of the software development process, in the context of implementation issues and the international nature of the collaboration.
Container technologies have been evolving rapidly in the cloud-native era. Kubernetes, as a production-grade container orchestration platform, has been proven to be successful at managing containerized applications in on-premises datacenters. However , Kubernetes lacks sufficient multi-tenant supports by design, meaning in cloud environments, dedicated clusters are required to serve multiple users, i.e., tenants. This limitation significantly diminishes the benefits of cloud computing, and makes it difficult to build multi-tenant software as a service (SaaS) products using Kubernetes. In this paper, we propose Virtual-Cluster, a new multi-tenant framework that extends Kubernetes with adequate multi-tenant supports. Basically, VirtualCluster provides both control plane and data plane isolations while sharing the underlying compute resources among tenants. The new framework preserves the API compatibility by avoiding modifying the Kubernetes core components. Hence, it can be easily integrated with existing Kubernetes use cases. Our experimental results show that the overheads introduced by VirtualCluster, in terms of latency and throughput, is moderate.
One of the major performance and scalability bottlenecks in large scientific applications is parallel reading and writing to supercomputer I/O systems. The usage of parallel file systems and consistency requirements of POSIX, that all the traditional HPC parallel I/O interfaces adhere to, pose limitations to the scalability of scientific applications. Object storage is a widely used storage technology in cloud computing and is more frequently proposed for HPC workload to address and improve the current scalability and performance of I/O in scientific applications. While object storage is a promising technology, it is still unclear how scientific applications will use object storage and what the main performance benefits will be. This work addresses these questions, by emulating an object storage used by a traditional scientific application and evaluating potential performance benefits. We show that scientific applications can benefit from the usage of object storage on large scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا