ﻻ يوجد ملخص باللغة العربية
An array of ultracold atoms in an optical lattice (Mott insulator) excited to a state where single electron wave-functions spatially overlap would represent a new and ideal platform to simulate exotic electronic many-body phenomena in the condensed phase. However, this highly excited non-equilibrium system is expected to be so short-lived that it has eluded observation so far. Here, we demonstrate the first step toward its realization by exciting high-lying electronic (Rydberg) states of the atomic Mott insulator with a coherent ultrashort laser pulse. Beyond a threshold principal quantum number where Rydberg orbitals of neighboring lattice sites overlap with each other, the atoms efficiently undergo spontaneous Penning ionization resulting in a drastic change of ion-counting statistics, sharp increase of avalanche ionization and the formation of an ultracold plasma. These observations signal the actual creation of exotic electronic states with overlapping wave functions, which is further confirmed by a significant difference in ionization dynamics between a Bose-Einstein condensate and a Mott insulator.
We present a quantum many-body description of the excitation spectrum of Rydberg polarons in a Bose gas. The many-body Hamiltonian is solved with functional determinant theory, and we extend this technique to describe Rydberg polarons of finite mass.
The lifetimes and decay channels of ultralong-range Rydberg molecules created in a dense BEC are examined by monitoring the time evolution of the Rydberg population using field ionization. Studies of molecules with values of principal quantum number,
Interaction between Rydberg atoms can significantly modify Rydberg excitation dynamics. Under a resonant driving field the Rydberg-Rydberg interaction in high-lying states can induce shifts in the atomic resonance such that a secondary Rydberg excita
We report coherent association of atoms into a single weakly bound NaCs molecule in an optical tweezer through an optical Raman transition. The Raman technique uses a deeply bound electronic excited intermediate state to achieve a large transition di
We report spectroscopic observation of Rydberg polarons in an atomic Bose gas. Polarons are created by excitation of Rydberg atoms as impurities in a strontium Bose-Einstein condensate. They are distinguished from previously studied polarons by macro