ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational waves from chiral phase transition in a conformally extended standard model

376   0   0.0 ( 0 )
 نشر من قبل Mayumi Aoki
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Mayumi Aoki




اسأل ChatGPT حول البحث

The gravitational wave (GW) background produced at the cosmological chiral phase transition in a conformal extension of the standard model is studied. To obtain the bounce solution of coupled field equations we implement an iterative method. We find that the corresponding $O(3)$ symmetric Euclidean action $S_3$ divided by the temperature $T$ has a simple behavior near the critical temperature $T_C$: $S_3/T propto (1-T/T_C)^{-gamma}$, which is subsequently used to determine the transitions inverse duration $beta$ normalized to the Hubble parameter $H$. It turns out that $beta/H gtrsim 10^3$, implying that the sound wave period $tau_text{sw}$ as an active GW source, too, can be much shorter than the Hubble time. We therefore compute $tau_text{sw} H$ and use it as the reduction factor for the sound wave contribution. The signal-to-noise ratio (SNR) for Deci-Hertz Interferometer Gravitational Wave Observatory (DECIGO) and Big Bang Observer (BBO) is evaluated, with the result: SNR$^text{DECIGO} lesssim 1.2$ and SNR$^text{BBO} lesssim 12.0$ for five years observation, from which we conclude that the GW signal predicted by the model in the optimistic case could be detected at BBO.

قيم البحث

اقرأ أيضاً

We investigate first order phase transitions in a holographic setting of five-dimensional Einstein gravity coupled to a scalar field, constructing phase diagrams of the dual field theory at finite temperature. We scan over the two-dimensional paramet er space of a simple bottom-up model and map out important quantities for the phase transition: the region where first order phase transitions take place; the latent heat, the transition strength parameter $alpha$, and the stiffness. We find that $alpha$ is generically in the range 0.1 to 0.3, and is strongly correlated with the stiffness (the square of the sound speed in a barotropic fluid). Using the LISA Cosmology Working Group gravitational wave power spectrum model corrected for kinetic energy suppression at large $alpha$ and non-conformal stiffness, we outline the observational prospects at the future space-based detectors LISA and TianQin. A TeV-scale hidden sector with a phase transition described by the model could be observable at both detectors.
Drastic changes in the early universe such as first-order phase transition can produce a stochastic gravitational wave (GW) background. We investigate the testability of a scale invariant extension of the standard model (SM) using the GW background p roduced by the chiral phase transition in a strongly interacting QCD-like hidden sector, which, via a SM singlet real scalar mediator, triggers the electroweak phase transition. Using the Nambu--Jona-Lasinio method in a mean field approximation we estimate the GW signal and find that it can be tested by future space based detectors.
We present a universal interpretation for a class of conformal extended standard models including Higgs portal interactions realized in low-energy effective theories. The scale generation mechanism in this class (scalegenesis) arises along the (nearl y) conformal/flat direction for the scale symmetry breaking, where the electroweak-symmetry breaking structure is achieved in a similar way to the standard models. A dynamical origin for the Higgs portal coupling can provide the discriminator for the low-energy ``universality class, to be probed in forthcoming collider experiments.
Based on the gauge symmetry group $SU(3)_Cotimes{SU(2)_L}otimes{U(1)_Y}otimes{U(1)_{B-L}}$, the minimal supersymmetric extension of the SM with local B-L gauge symmetry(B-LSSM) has been introduced. In this model, we study the Higgs masses with the on e-loop zero temperature effective potential corrections. Besides, the finite temperature effective potentials connected with two $U(1)_{B-L}$ Higgs singlets are deduced specifically. Then we can obtain the gravitational wave spectrums generated from the strong first-order phase transition. In the B-LSSM, the gravitational wave signals can be as strong as $h^2Omega_{GW}sim10^{-11}$, which may be detectable in the future experiments.
We provide the C++ tool BSMPT for calculating the strength of the electroweak phase transition in extended Higgs sectors. This relies on the loop-corrected effective potential at finite temperature including daisy resummation of the bosonic masses. T he program allows to compute the vacuum expectation value (VEV) $v$ of the potential as a function of the temperature, and in particular the critical VEV $v_c$ at the temperature $T_c$ where the phase transition takes place. In addition, the loop-corrected trilinear Higgs self-couplings are provided. We apply an on-shell renormalization scheme in the sense that the loop-corrected masses and mixing angles are required to be equal to their tree-level input values. This allows for efficient scans in the parameter space of the models. The models implemented so far are the CP-conserving and the CP-violating 2-Higgs-Doublet Models (2HDM) and the Next-to-Minimal 2HDM (N2HDM). The program structure is such that the user can easily implement further models. Our tool can be used for the investigation of electroweak baryogenesis in models with extended Higgs sectors and the related Higgs self-couplings. The combination with parameter scans in the respective models allows to study the impact on collider phenomenology and to make a link between collider phenomenology and cosmology. The program package can be downloaded at: https://github.com/phbasler/BSMPT.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا