ترغب بنشر مسار تعليمي؟ اضغط هنا

Reciprocity between local moments and collective magnetic excitations in the phase diagram of BaFe$_2$(As$_{1-x}$P$_x$)$_2$

101   0   0.0 ( 0 )
 نشر من قبل Jonathan Pelliciari
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Unconventional superconductivity arises at the border between the strong coupling regime with local magnetic moments and the weak coupling regime with itinerant electrons, and stems from the physics of criticality that dissects the two. Unveiling the nature of the quasiparticles close to quantum criticality is fundamental to understand the phase diagram of quantum materials. Here, using resonant inelastic x-ray scattering (RIXS) and Fe-K$_beta$ emission spectroscopy (XES), we visualize the coexistence and evolution of local magnetic moments and collective spin excitations across the superconducting dome in isovalently-doped BaFe$_2$(As$_{1-x}$P$_x$)$_2$ (0.00$leq$x$leq0.$52). Collective magnetic excitations resolved by RIXS are gradually hardened, whereas XES reveals a strong suppression of the local magnetic moment upon doping. This relationship is captured by an intermediate coupling theory, explicitly accounting for the partially localized and itinerant nature of the electrons in Fe pnictides. Finally, our work identifies a local-itinerant spin fluctuations channel through which the local moments transfer spin excitations to the particle-hole (paramagnons) continuum across the superconducting dome.

قيم البحث

اقرأ أيضاً

In many classes of unconventional superconductors, the question of whether the superconductivity is enhanced by the quantum-critical fluctuations on the verge of an ordered phase remains elusive. One of the most direct ways of addressing this issue i s to investigate how the superconducting dome traces a shift of the ordered phase. Here, we study how the phase diagram of the iron-based superconductor BaFe$_2$(As$_{1-x}$P$_x$)$_2$ changes with disorder via electron irradiation, which keeps the carrier concentrations intact. With increasing disorder, we find that the magneto-structural transition is suppressed, indicating that the critical concentration is shifted to the lower side. Although the superconducting transition temperature $T_c$ is depressed at high concentrations ($xgtrsim$0.28), it shows an initial increase at lower $x$. This implies that the superconducting dome tracks the shift of the antiferromagnetic phase, supporting the view of the crucial role played by quantum-critical fluctuations in enhancing superconductivity in this iron-based high-$T_c$ family.
225 - S.-F. Wu , W.-L. Zhang , D. Hu 2016
We use electronic Raman scattering to study the low-energy excitations in BaFe$_2$(As$_{0.5}$P$_{0.5}$)$_2$ ($T_c approx 16$ K) samples. In addition to a superconducting pair breaking peak (2$Delta=6.7$ meV) in the A$_{1g}$ channel with a linear tail towards zero energy, suggesting a nodal gap structure, we detect spectral features associated to Pomeranchuk oscillations in the A$_{1g}$, B$_{1g}$ and B$_{2g}$ channels. We argue that the small Fermi energy of the system is an essential condition for these Pomeranchuk oscillations to be underdamped. The Pomeranchuk oscillations have the same frequencies in the B$_{1g}$ and B$_{2g}$ channels, which we explain by the mixing of these symmetries resulting from the removal of the $sigma_v$ and $sigma_v$ symmetry planes due to a large As/P disorder. Interestingly, we show that the temperature at which the peaks corresponding to the Pomeranchuk oscillations get underdamped is consistent with the non-Fermi liquid to Femi liquid crossover determined by transport, suggesting that the Pomeranchuk instability plays an important role in the low-energy physics of the Fe-based superconductors.
We investigate the in-plane anisotropy of Fe 3d orbitals occurring in a wide temperature and composition range of BaFe2(As1-xPx)2 system. By employing the angle-resolved photoemission spectroscopy, the lifting of degeneracy in dxz and dyz orbitals at the Brillouin zone corners can be obtained as a measure of the orbital anisotropy. In the underdoped regime, it starts to evolve on cooling from high temperatures above both antiferromagnetic and orthorhombic transitions. With increasing x, it well survives into the superconducting regime, but gradually gets suppressed and finally disappears around the non-superconducting transition (x = 0.7). The observed spontaneous in-plane orbital anisotropy, possibly coupled with anisotropic lattice and magnetic fluctuations, implies the rotational-symmetry broken electronic state working as the stage for the superconductivity in BaFe2(As1-xPx)2.
The interplay between superconductivity and Eu$ ^{2+}$ magnetic moments in EuFe$_2$(As$_{1-x}$P$_x$)$_2$ is studied by electrical resistivity measurements under hydrostatic pressure on $x=0.13$ and $x=0.18$ single crystals. We can map hydrostatic pre ssure to chemical pressure $x$ and show, that superconductivity is confined to a very narrow range $0.18leq x leq 0.23$ in the phase diagram, beyond which ferromagnetic (FM) Eu ordering suppresses superconductivity. The change from antiferro- to FM Eu ordering at the latter concentration coincides with a Lifshitz transition and the complete depression of iron magnetic order.
We present neutron diffraction analysis of BaFe$_2$(As$_{1-x}$P$_x$)$_2$ over a wide temperature (10 to 300 K) and compositional ($0.11 leq x leq 0.79$) range, including the normal state, the magnetically ordered state, and the superconducting state. The paramagnetic to spin-density wave and orthorhombic to tetragonal transitions are first order and coincident within the sensitivity of our measurements ($sim 0.5$ K). Extrapolation of the orthorhombic order parameter down to zero suggests that structural quantum criticality cannot exist at compositions higher than $x = 0.28$, which is much lower than values determined using other methods, but in good agreement with our observations of the actual phase stability range. The onset of spin-density wave order shows a stronger structural anomaly than the charge-doped system in the form of an enhancement of the $c/a$ ratio below the transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا