ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational waves from magnetically-induced thermal neutron star mountains

122   0   0.0 ( 0 )
 نشر من قبل David Ian Jones
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many low-mass X-ray binary (LMXB) systems are observed to contain rapidly spinning neutron stars. The spin frequencies of these systems may be limited by the emission of gravitational waves. This can happen if their mass distribution is sufficiently non-axisymmetric. It has been suggested that such `mountains may be created via temperature non-axisymmetries, but estimates of the likely level of temperature asymmetry have been lacking. To remedy this, we examine a simple symmetry breaking mechanism, where an internal magnetic field perturbs the thermal conductivity tensor, making it direction-dependent. We find that the internal magnetic field strengths required to build mountains of the necessary size are very large, several orders of magnitude larger than the inferred external field strengths, pushing into the regime where our assumption of the magnetic field having a perturbative effect on the thermal conductivity breaks down. We also examine how non-axisymmetric surface temperature profiles, as might be caused by magnetic funnelling of the accretion flow, lead to internal temperature asymmetries, but find that for realistic parameters the induced non-axisymmetries are very small. We conclude that, in the context of this work at least, very large internal magnetic fields are required to generate mountains of the necessary size.

قيم البحث

اقرأ أيضاً

284 - Fabian Gittins 2021
With the remarkable advent of gravitational-wave astronomy, we have shed light on previously shrouded events: compact binary coalescences. Neutron stars are promising (and confirmed) sources of gravitational radiation and it proves timely to consider the ways in which these stars can be deformed. Gravitational waves provide a unique window through which to examine neutron-star interiors and learn more about the equation of state of ultra-dense nuclear matter. In this work, we study two relevant scenarios for gravitational-wave emission: neutron stars that host (non-axially symmetric) mountains and neutron stars deformed by the tidal field of a binary partner. Although they have yet to be seen with gravitational waves, rotating neutron stars have long been considered potential sources. By considering the observed spin distribution of accreting neutron stars with a phenomenological model for the spin evolution, we find evidence for gravitational radiation in these systems. We study how mountains are modelled in both Newtonian and relativistic gravity and introduce a new scheme to resolve issues with previous approaches to this problem. The crucial component of this scheme is the deforming force that gives the star its non-spherical shape. We find that the force (which is a proxy for the stars formation history), as well as the equation of state, plays a pivotal role in supporting the mountains. Considering a scenario that has been observed with gravitational waves, we calculate the structure of tidally deformed neutron stars, focusing on the impact of the crust. We find that the effect on the tidal deformability is negligible, but the crust will remain largely intact up until merger.
Neutron stars may harbour the true ground state of matter in the form of strange quark matter. If present, this type of matter is expected to be a color superconductor, a consequence of quark pairing with respect to the color/flavor degrees of freedo m. The stellar magnetic field threading the quark core becomes a color-magnetic admixture and, in the event that superconductivity is of type II, leads to the formation of color-magnetic vortices. In this Letter we show that the volume-averaged color-magnetic vortex tension force should naturally lead to a significant degree of non-axisymmetry in systems like radio pulsars. We show that gravitational radiation from such color-magnetic `mountains in young pulsars like the Crab and Vela could be observable by the future Einstein Telescope, thus becoming a probe of paired quark matter in neutron stars. The detectability threshold can be pushed up toward the sensitivity level of Advanced LIGO if we invoke an interior magnetic field about a factor ten stronger than the surface polar field.
Neutron star binary mergers are strong sources of gravitational waves (GWs). Promising electromagnetic counterparts are short gamma-ray bursts (GRBs) but the emission is highly collimated. We propose that the scattering of the long-lasting plateau em ission in short GRBs by the merger ejecta produces nearly isotropic emission for $sim 10^4$ s with flux $10^{-13}-10^{-10}$ erg cm$^{-2}$ s$^{-1}$ at 100 Mpc in X-ray. This is detectable by Swift XRT and wide field X-ray detectors such as ISS-Lobster, Einstein Probe, eROSITA and WF-MAXI, which are desired by the infrared and optical follow-ups to localize and measure the distance to the host galaxy. The scattered X-rays obtain linear polarization, which correlates with the jet direction, X-ray luminosity and GW polarizations. The activity of plateau emission is also a natural energy source of a macronova (or kilonova) detected in short GRB 130603B without the $r$-process radioactivity.
We present an effective, low-dimensionality frequency-domain template for the gravitational wave signal from the stellar remnants from binary neutron star coalescence. A principal component decomposition of a suite of numerical simulations of binary neutron star mergers is used to construct orthogonal basis functions for the amplitude and phase spectra of the waveforms for a variety of neutron star equations of state and binary mass configurations. We review the phenomenology of late merger / post-merger gravitational wave emission in binary neutron star coalescence and demonstrate how an understanding of the dynamics during and after the merger leads to the construction of a universal spectrum. We also provide a discussion of the prospects for detecting the post-merger signal in future gravitational wave detectors as a potential contribution to the science case for third generation instruments. The template derived in our analysis achieves $>90%$ match across a wide variety of merger waveforms and strain sensitivity spectra for current and potential gravitational wave detectors. A Fisher matrix analysis yields a preliminary estimate of the typical uncertainty in the determination of the dominant post-merger oscillation frequency $f_{mathrm{peak}}$ as $delta f_{mathrm{peak}} sim 50$Hz. Using recently derived correlations between $f_{mathrm{peak}}$ and the neutron star radii, this suggests potential constraints on the radius of a fiducial neutron star of $sim 220$,m. Such measurements would only be possible for nearby ($sim 30$Mpc) sources with advanced LIGO but become more feasible for planned upgrades to advanced LIGO and other future instruments, leading to constraints on the high density neutron star equation of state which are independent and complementary to those inferred from the pre-merger inspiral gravitational wave signal.
As the era of gravitational-wave astronomy has well and truly begun, gravitational radiation from rotating neutron stars remains elusive. Rapidly spinning neutron stars are the main targets for continuous-wave searches since, according to general rel ativity, provided they are asymmetrically deformed, they will emit gravitational waves. It is believed that detecting such radiation will unlock the answer to why no pulsars have been observed to spin close to the break-up frequency. We review existing studies on the maximum mountain that a neutron star crust can support, critique the key assumptions and identify issues relating to boundary conditions that need to be resolved. In light of this discussion, we present a new scheme for modelling neutron star mountains. The crucial ingredient for this scheme is a description of the fiducial force which takes the star away from sphericity. We consider three examples: a source potential which is a solution to Laplaces equation, another solution which does not act in the core of the star and a thermal pressure perturbation. For all the cases, we find that the largest quadrupoles are between a factor of a few to two orders of magnitude below previous estimates of the maximum mountain size.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا