ﻻ يوجد ملخص باللغة العربية
Symmetries of Einstein-Yang-Mills (EYM) amplitudes, together with the recursive expansions, induce nontrivial identities for pure Yang-Mills amplitudes. In the previous work cite{Hou:2018bwm}, we have already proven that the identities induced from tree level single-trace EYM amplitudes can be precisely expanded in terms of BCJ relations. In this paper, we extend the discussions to those identities induced from all tree level emph{multi-trace} EYM amplitudes. Particularly, we establish a refined graphic rule for multi-trace EYM amplitudes and then show that the induced identities can be fully decomposed in terms of BCJ relations.
All positive helicity four-point gluon-graviton amplitudes in Einstein-Yang-Mills theory coupled to a dilaton and axion field are computed at the leading one-loop order using colour-kinematics duality. In particular, all relevant contributions in the
All four-point mixed gluon-graviton amplitudes in pure Einstein-Yang-Mills theory with at most one state of negative helicity are computed at one-loop order and maximal powers of the gauge coupling using D-dimensional generalized unitarity. The resul
All tree-level amplitudes in Einstein-Yang-Mills (EYM) theory and gravity (GR) can be expanded in terms of color ordered Yang-Mills (YM) ones whose coefficients are polynomial functions of Lorentz inner products and are constructed by a graphic rule.
In this paper, we provide a thorough study on the expansion of single trace Einstein-Yang-Mills amplitudes into linear combination of color-ordered Yang-Mills amplitudes, from various different perspectives. Using the gauge invariance principle, we p
From pure Yang-Mills action for the $SL(5,mathbb{R})$ group in four Euclidean dimensions we obtain a gravity theory in the first order formalism. Besides the Einstein-Hilbert term, the effective gravity has a cosmological constant term, a curvature s