ترغب بنشر مسار تعليمي؟ اضغط هنا

Lepton anomalous magnetic moments in Lattice QCD+QED

148   0   0.0 ( 0 )
 نشر من قبل Silvano Simula
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a lattice calculation of the Hadronic Vacuum Polarization (HVP) contribution to the anomalous magnetic moments of the electron, $a_e^{rm HVP}$, the muon, $a_mu^{rm HVP}$, and the tau, $a_tau^{rm HVP}$, including both the isospin-symmetric QCD term and the leading-order strong and electromagnetic isospin-breaking corrections. Moreover, the contribution to $a_mu^{rm HVP}$ not covered by the MUonE experimen, $a_{MUonE}^{rm HVP}$, is provided. We get $a_e^{rm HVP} = 185.8~(4.2) cdot 10^{-14}$, $a_mu^{rm HVP} = 692.1~(16.3) cdot 10^{-10}$, $a_tau^{rm HVP} = 335.9~(6.9) cdot 10^{-8}$ and $a_{MUonE}^{rm HVP} = 91.6~(2.0) cdot 10^{-10}$. Our results are obtained in the quenched-QED approximation using the QCD gauge configurations generated by the European (now Extended) Twisted Mass Collaboration (ETMC) with $N_f=2+1+1$ dynamical quarks, at three values of the lattice spacing varying from $0.089$ to $0.062$ fm, at several values of the lattice spatial size ($L simeq 1.8 div 3.5$ fm) and with pion masses in the range between $simeq 220$ and $simeq 490$ MeV.

قيم البحث

اقرأ أيضاً

We present a reliable nonperturbative calculation of the QCD correction, at leading order in the electromagnetic coupling, to the anomalous magnetic moment of the electron, muon, and tau leptons using two-flavor lattice QCD. We use multiple lattice s pacings, multiple volumes, and a broad range of quark masses to control the continuum, infinite-volume, and chiral limits. We examine the impact of the commonly ignored disconnected diagrams and introduce a modification to the previously used method that results in a well-controlled lattice calculation. We obtain 1.513(43) 10^(-12), 5.72(16) 10^(-8), and 2.650(54) 10^(-6) for the leading-order two-flavor QCD correction to the anomalous magnetic moment of the electron, muon, and tau, respectively, each accurate to better than 3%.
68 - D. Giusti , S. Simula 2020
The ratios among the leading-order (LO) hadronic vacuum polarization (HVP) contributions to the anomalous magnetic moments of electron, muon and tau-lepton, $a_{ell=e,mu tau}^{HVP,LO}$, are computed using lattice QCD+QED simulations. The results incl ude the effects at order $O(alpha_{em}^2)$ as well as the electromagnetic and strong isospin-breaking corrections at orders $O(alpha_{em}^3)$ and $O(alpha_{em}^2(m_u-m_d))$, respectively, where $(m_u-m_d)$ is the $u$- and $d$-quark mass difference. We employ the gauge configurations generated by the Extended Twisted Mass Collaboration with $N_f=2+1+1$ dynamical quarks at three values of the lattice spacing ($a simeq 0.062, 0.082, 0.089$ fm) with pion masses in the range 210 - 450 MeV. We show that in the case of the electron-muon ratio the hadronic uncertainties in the numerator and in the denominator largely cancel out, while in the cases of the electron-tau and muon-tau ratios such a cancellation does not occur. For the electron-muon ratio we get $R_{e/mu } equiv (m_mu/m_e)^2 (a_e^{HVP,LO} / a_mu^{HVP,LO}) = 1.1456~(83)$ with an uncertainty of $simeq 0.7 %$. Our result, which represents an accurate Standard Model (SM) prediction, agrees very well with the estimate obtained using the results of dispersive analyses of the experimental $e^+ e^- to$ hadrons data. Instead, it differs by $simeq 2.7$ standard deviations from the value expected from present electron and muon (g - 2) experiments after subtraction of the current estimates of the QED, electro-weak, hadronic light-by-light and higher-order HVP contributions, namely $R_{e/mu} = 0.575~(213)$. An improvement of the precision of both the experiment and the QED contribution to the electron (g - 2) by a factor of $simeq 2$ could be sufficient to reach a tension with our SM value of the ratio $R_{e/mu }$ at a significance level of $simeq 5$ standard deviations.
The leading electromagnetic (e.m.) and strong isospin-breaking corrections to the $pi^+ to mu^+ u[gamma]$ and $K^+ to mu^+ u[gamma]$ leptonic decay rates are evaluated for the first time on the lattice. The results are obtained using gauge ensemble s produced by the European Twisted Mass Collaboration with $N_f = 2 + 1 + 1$ dynamical quarks. The relative leading-order e.m.~and strong isospin-breaking corrections to the decay rates are 1.53(19)% for $pi_{mu 2}$ decays and 0.24(10)% for $K_{mu 2}$ decays. Using the experimental values of the $pi_{mu 2}$ and $K_{mu 2}$ decay rates and updated lattice QCD results for the pion and kaon decay constants in isosymmetric QCD, we find that the Cabibbo-Kobayashi-Maskawa matrix element $ | V_{us}| = 0.22538(46)$, reducing by a factor of about $1.8$ the corresponding uncertainty in the Particle Data Group review. Our calculation of $|V_{us}|$ allows also an accurate determination of the first-row CKM unitarity relation $| V_{ud}|^2 + | V_{us}|^2 + | V_{ub}|^2 = 0.99988(46)$. Theoretical developments in this paper include a detailed discussion of how QCD can be defined in the full QCD+QED theory and an improved renormalisation procedure in which the bare lattice operators are renormalised non-perturbatively into the (modified) Regularization Independent Momentum subtraction scheme and subsequently matched perturbatively at $O(alpha_{em}alpha_s(M_W))$ into the W-regularisation scheme appropriate for these calculations.
This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for lattice QCD in quark and lepton flavor physics. New data generated at Belle II, LHCb, BES III, NA62, KOTO, and Fermilab E989, combined wi th precise calculations of the relevant hadronic physics, may reveal what lies beyond the Standard Model. We outline a path toward improvements of the precision of existing lattice-QCD calculations and discuss groundbreaking new methods that allow lattice QCD to access new observables.
The hadronic leading-order (hlo) contribution to the lepton anomalous magnetic moments $a_l^mathrm{hlo}$ of the Standard Model leptons still accounts for the dominant source of the uncertainty of the Standard Model estimates. We present the results o f an investigation of the hadronic leading order anomalous magnetic moments of the electron, muon and tau lepton from first principles in twisted mass lattice QCD. With lattice data for multiple pion masses in the range $230 mathrm{~MeV} lesssim m_{PS} lesssim 490 mathrm{~MeV}$, multiple lattice volumes and three lattice spacings we perform the extrapolation to the continuum and to the physical pion mass and check for all systematic uncertainties in the lattice calculation. As a result we calculate $a_{l}^mathrm{hlo}$ for the three Standard Model leptons with controlled statistical and systematic error in agreement with phenomenological determinations using dispersion relations and experimental data. In addition, we also give a first estimate of the hadronic leading order anomalous magnetic moments from simulations directly at the physical value of the pion mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا