ﻻ يوجد ملخص باللغة العربية
We show how a large family of interacting nonequilibrium phases of matter can arise from the presence of multiple time-translation symmetries, which occur by quasiperiodically driving an isolated quantum many-body system with two or more incommensurate frequencies. These phases are fundamentally different from those realizable in time-independent or periodically-driven (Floquet) settings. Focusing on high-frequency drives with smooth time-dependence, we rigorously establish general conditions for which these phases are stable in a parametrically long-lived `preheating regime. We develop a formalism to analyze the effect of the multiple time-translation symmetries on the dynamics of the system, which we use to classify and construct explicit examples of the emergent phases. In particular, we discuss time quasi-crystals which spontaneously break the time-translation symmetries, as well as time-translation symmetry protected topological phases.
The second law of thermodynamics points to the existence of an `arrow of time, along which entropy only increases. This arises despite the time-reversal symmetry (TRS) of the microscopic laws of nature. Within quantum theory, TRS underpins many inter
Here we study the phase diagram of the Aubry-Andre-Harper model in the presence of strong interactions as the strength of the quasiperiodic potential is varied. Previous work has established the existence of many-body localized phase at large potenti
We construct an example of a 1$d$ quasiperiodically driven spin chain whose edge states can coherently store quantum information, protected by a combination of localization, dynamics, and topology. Unlike analogous behavior in static and periodically
We propose and analyze two distinct routes toward realizing interacting symmetry-protected topological (SPT) phases via periodic driving. First, we demonstrate that a driven transverse-field Ising model can be used to engineer complex interactions wh
Abelian Chern-Simons theory, characterized by the so-called $K$ matrix, has been quite successful in characterizing and classifying Abelian fractional quantum hall effect (FQHE) as well as symmetry protected topological (SPT) phases, especially for b