ترغب بنشر مسار تعليمي؟ اضغط هنا

A framework for quantum homomorphic encryption with experimental demonstration

71   0   0.0 ( 0 )
 نشر من قبل Li Yu
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum homomorphic encryption (QHE) is an encryption method that allows quantum computation to be performed on one partys private data with the program provided by another party, without revealing much information about the data nor the program to the opposite party. We propose a framework for (interactive) QHE based on the universal circuit approach. It contains a subprocedure of calculating a classical linear polynomial, which can be implemented with quantum or classical methods; apart from the subprocedure, the framework has low requirement on the quantum capabilities of the party who provides the circuit. We illustrate the subprocedure using a quite simple classical protocol with some privacy tradeoff. For a special case of such protocol, we obtain a scheme similar to blind quantum computation but with the output on a different party. Another way of implementing the subprocedure is to use a recently studied quantum check-based protocol, which has low requirement on the quantum capabilities of both parties. The subprocedure could also be implemented with a classical additive homomorphic encryption scheme. We demonstrate some key steps of the outer part of the framework in a quantum optics experiment.



قيم البحث

اقرأ أيضاً

Quantum computers promise not only to outperform classical machines for certain important tasks, but also to preserve privacy of computation. For example, the blind quantum computing protocol enables secure delegated quantum computation, where a clie nt can protect the privacy of their data and algorithms from a quantum server assigned to run the computation. However, this security comes at the expense of interaction: the client and server must communicate after each step of the computation. Homomorphic encryption, on the other hand, avoids this limitation. In this scenario, the server specifies the computation to be performed, and the client provides only the input data, thus enabling secure non-interactive computation. Here we demonstrate a homomorphic-encrypted quantum random walk using single-photon states and non-birefringent integrated optics. The client encrypts their input state in the photons polarization degree of freedom, while the server performs the computation using the path degree of freedom. Our random walk computation can be generalized, suggesting a promising route toward more general homomorphic encryption protocols.
We present a scheme for implementing homomorphic encryption on coherent states encoded using phase-shift keys. The encryption operations require only rotations in phase space, which commute with computations in the codespace performed via passive lin ear optics, and with generalized non-linear phase operations that are polynomials of the photon-number operator in the codespace. This encoding scheme can thus be applied to any computation with coherent state inputs, and the computation proceeds via a combination of passive linear optics and generalized non-linear phase operations. An example of such a computation is matrix multiplication, whereby a vector representing coherent state amplitudes is multiplied by a matrix representing a linear optics network, yielding a new vector of coherent state amplitudes. By finding an orthogonal partitioning of the support of our encoded states, we quantify the security of our scheme via the indistinguishability of the encrypted codewords. Whilst we focus on coherent state encodings, we expect that this phase-key encoding technique could apply to any continuous-variable computation scheme where the phase-shift operator commutes with the computation.
We study the problem of encrypting and authenticating quantum data in the presence of adversaries making adaptive chosen plaintext and chosen ciphertext queries. Classically, security games use string copying and comparison to detect adversarial chea ting in such scenarios. Quantumly, this approach would violate no-cloning. We develop new techniques to overcome this problem: we use entanglement to detect cheating, and rely on recent results for characterizing quantum encryption schemes. We give definitions for (i.) ciphertext unforgeability , (ii.) indistinguishability under adaptive chosen-ciphertext attack, and (iii.) authenticated encryption. The restriction of each definition to the classical setting is at least as strong as the corresponding classical notion: (i) implies INT-CTXT, (ii) implies IND-CCA2, and (iii) implies AE. All of our new notions also imply QIND-CPA privacy. Combining one-time authentication and classical pseudorandomness, we construct schemes for each of these new quantum security notions, and provide several separation examples. Along the way, we also give a new definition of one-time quantum authentication which, unlike all previous approaches, authenticates ciphertexts rather than plaintexts.
117 - Junyi Li , Heng Huang 2020
Due to the rising privacy demand in data mining, Homomorphic Encryption (HE) is receiving more and more attention recently for its capability to do computations over the encrypted field. By using the HE technique, it is possible to securely outsource model learning to the not fully trustful but powerful public cloud computing environments. However, HE-based training scales badly because of the high computation complexity. It is still an open problem whether it is possible to apply HE to large-scale problems. In this paper, we propose a novel general distributed HE-based data mining framework towards one step of solving the scaling problem. The main idea of our approach is to use the slightly more communication overhead in exchange of shallower computational circuit in HE, so as to reduce the overall complexity. We verify the efficiency and effectiveness of our new framework by testing over various data mining algorithms and benchmark data-sets. For example, we successfully train a logistic regression model to recognize the digit 3 and 8 within around 5 minutes, while a centralized counterpart needs almost 2 hours.
Non-malleability is an important security property for public-key encryption (PKE). Its significance is due to the fundamental unachievability of integrity and authenticity guarantees in this setting, rendering it the strongest integrity-like propert y achievable using only PKE, without digital signatures. In this work, we generalize this notion to the setting of quantum public-key encryption. Overcoming the notorious recording barrier known from generalizing other integrity-like security notions to quantum encryption, we generalize one of the equivalent classical definitions, comparison-based non-malleability, and show how it can be fulfilled. In addition, we explore one-time non-malleability notions for symmetric-key encryption from the literature by defining plaintext and ciphertext variants and by characterizing their relation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا