ﻻ يوجد ملخص باللغة العربية
Comet 21P/Giacobini-Zinner (hereafter, comet 21P/G-Z) is a Jupiter-family comet and a parent comet of the October Draconids meteor shower. If meteoroids originating from a Jupiter-family comet contain complex organic molecules, such as amino acids, they are essential pieces of the puzzle regarding the origin of life on Earth. We observed comet 21P/G-Z in the mid-infrared wavelength region using the Cooled Mid-infrared Camera and Spectrometer (COMICS) on the 8.2 m Subaru Telescope on UT 2005 July 5. Here, we report the unidentified infrared (UIR) emission features of comet 21P/G-Z, which are likely due to complex organic molecules (both aliphatic and aromatic hydrocarbons), and the thermal emission from amorphous/crystalline silicates and amorphous carbon grains in its mid-infrared low-resolution spectrum. The UIR features at ~8.2 micron, ~8.5 micron, and ~11.2 micron found in the spectrum of comet 21P/G-Z could be attributed to polycyclic aromatic hydrocarbons (or hydrogenated amorphous carbons) contaminated by N- or O-atoms, although part of the feature at ~11.2 micron comes from crystalline olivine. The other feature at ~9.2 micron might originate from aliphatic hydrocarbons. Comet 21P/G-Z is enriched in complex organic molecules. Considering that the derived mass fraction of crystalline silicates in comet 21P/G-Z is typical of comets, we propose that the comet originated from a circumplanetary disk of giant planets (similar to Jupiter and Saturn) where was warmer than the typical comet-forming region (5-30 au from the Sun) and was suitable for the formation of complex organic molecules. Comets from circumplanetary disks might be enriched in complex organic molecules, such as comet 21P/G-Z, and may have provided pre-biotic molecules to ancient Earth by direct impact or meteor showers.
We report results of polarimetric observations of comet 21P/Giacobini-Zinner made at phase angles, {alpha}=76-78 deg, between 10 and 17 of September 2018, and compare them with previous measurements. We find significant variations in the polarimetric
We report on photometry and high resolution spectroscopy of the chemically peculiar Jupiter-family Comet (hereafter JFC) 21P/Giacobini-Zinner. Comet 21P is a well known member of the carbon-chain depleted family but displays also a depletion of amine
Jovian Trojan D-type asteroids have mid-infrared emissivity features strikingly similar to comet comae, suggesting that they have the same compositions and that the surfaces of the Trojans are highly porous. However, a direct comparison between a com
The Infrared Space Observatory (ISO) has provided the first complete mid-IR spectra for a wide range of objects. Almost all of these spectra are dominated by the well-known infrared emission features at 3.3, 6.2, 7.7, and 11.2 $mu$m, the so-called Un
We present mid-infrared observations of comet P/2016 BA14 (PANSTARRS), which were obtained on UT 2016 March 21.3 at heliocentric and geocentric distances of 1.012 au and 0.026 au, respectively, approximately 30 hours before its closest approach to Ea