ﻻ يوجد ملخص باللغة العربية
Two-dimensional (2D) layered materials offer intriguing possibilities for novel physics and applications. Before any attempt at exploring the materials space in a systematic fashion, or combining insights from theory, computation and experiment, a formal description of information about an assembly of arbitrary composition is required. Here, we introduce a domain-generic notation that is used to describe the space of 2D layered materials from monolayers to twisted assemblies of arbitrary composition, existent or not-yet-fabricated. The notation corresponds to a theoretical materials concept of stepwise assembly of layered structures using a sequence of rotation, vertical stacking, and other operations on individual 2D layers. Its scope is demonstrated with a number of example structures using common single-layer materials as building blocks. This work overall aims to contribute to the systematic codification, capture and transfer of materials knowledge in the area of 2D layered materials.
We present a scheme to controllably improve the accuracy of tight-binding Hamiltonian matrices derived by projecting the solutions of plane-wave ab initio calculations on atomic orbital basis sets. By systematically increasing the completeness of the
With the examples of the C $K$-edge in graphite and the B $K$-edge in hexagonal BN, we demonstrate the impact of vibrational coupling and lattice distortions on the X-ray absorption near-edge structure (XANES) in 2D layered materials. Theoretical XAN
The Materials Project crystal structure database has been searched for materials possessing layered motifs in their crystal structures using a topology-scaling algorithm. The algorithm identifies and measures the sizes of bonded atomic clusters in a
In recent years, enhanced light-matter interactions through a plethora of dipole-type polaritonic excitations have been observed in two-dimensional (2D) layered materials. In graphene, electrically tunable and highly confined plasmon-polaritons were
We demonstrate the successive appearance of the exciton, biexciton, and P band of the exciton-exciton scattering with increasing excitation power in the photoluminescence of indium selenide layered crystals. The strict energy and momentum conservatio