ﻻ يوجد ملخص باللغة العربية
Whenever available, refined BPS indices provide considerably more information on the spectrum of BPS states than their unrefined version. Extending earlier work on the modularity of generalized Donaldson-Thomas invariants counting D4-D2-D0 brane bound states in type IIA strings on a Calabi-Yau threefold $mathfrak{Y}$, we construct the modular completion of generating functions of refined BPS indices supported on a divisor class. Although for compact $mathfrak{Y}$ the refined indices are not protected, switching on the refinement considerably simplifies the construction of the modular completion. Furthermore, it leads to a non-commutative analogue of the TBA equations, which suggests a quantization of the moduli space consistent with S-duality. In contrast, for a local CY threefold given by the total space of the canonical bundle over a complex surface $S$, refined BPS indices are well-defined, and equal to Vafa-Witten invariants of $S$. Our construction provides a modular completion of the generating function of these refined invariants for arbitrary rank. In cases where all reducible components of the divisor class are collinear (which occurs e.g. when $b_2(mathfrak{Y})=1$, or in the local case), we show that the holomorphic anomaly equation satisfied by the completed generating function truncates at quadratic order. In the local case, it agrees with an earlier proposal by Minahan et al for unrefined invariants, and extends it to the refined level using the afore-mentioned non-commutative structure. Finally, we show that these general predictions reproduce known results for $U(2)$ and $U(3)$ Vafa-Witten theory on $mathbb{P}^2$, and make them explicit for $U(4)$.
We perform a systematic study of S-duality for ${cal N}=2$ supersymmetric non-linear abelian theories on a curved manifold. Localization can be used to compute certain supersymmetric observables in these theories. We point out that localization and S
Inspired by the split attractor flow conjecture for multi-centered black hole solutions in N=2 supergravity, we propose a formula expressing the BPS index $Omega(gamma,z)$ in terms of `attractor indices $Omega_*(gamma_i)$. The latter count BPS states
We consider the matrix model of $U(N)$ refined Chern-Simons theory on $S^3$ for the unknot. We derive a $q$-difference operator whose insertion in the matrix integral reproduces an infinite set of Ward identities which we interpret as $q$-Virasoro co
We study a perturbation family of N=2 3d gauge theories and its relation to quantum K-theory. A 3d version of the Intriligator-Vafa formula is given for the quantum K-theory ring of Grassmannians. The 3d BPS half-index of the gauge theory is connecte
We examine the large $N$ 1/4-BPS spectrum of the symmetric orbifold CFT Sym$^N(M)$ deformed to the supergravity point in moduli space for $M= K3$ and $T^4$. We consider refinement under both left- and right-moving $SU(2)_R$ symmetries of the supercon