ﻻ يوجد ملخص باللغة العربية
The Fragmentation Functions is one of the non-perturbative components of the QCD factorization theorem. They represents the probability of a parton carrying a fraction z of momentum to form into a particular kind of hadron. In this work, we study the jet fragmentation functions in the collisions between electrons and positrons. The jets where identified with Fastjet for different p_{Tch jet} intervals. The intervals and the final jets were reconstructed by means of the event shape T separation using spherocity variable, the study is performed under Pythia Monte Carlo event generator framework.
We report on the first extraction of interference fragmentation functions from the semi-inclusive production of two hadron pairs in back-to-back jets in e+e- annihilation. A nonzero asymmetry in the correlation of azimuthal orientations of opposite p
Using a model calculation of dihadron fragmentation functions, we fit the spin asymmetry recently extracted by HERMES for the semi-inclusive pion pair production in deep-inelastic scattering on a transversely polarized proton target. By evolving the
An exclusive event generator is designed for the $e^+e^-$ scan experiments with the initial state radiation effects up to the second order correction included. There are seventy hadronic decay modes available with the effective center-of-mass energy
We perform the first iterative Monte Carlo (IMC) analysis of fragmentation functions constrained by all available data from single-inclusive $e^+ e^-$ annihilation into pions and kaons. The IMC method eliminates potential bias in traditional analyses
Experimental data from Belle Collaboration for the transverse polarization of $Lambda$s measured in $e^+ e^-$ annihilation processes are used to extract the polarizing fragmentation function (FF) within a TMD approach. We consider both associated and