ﻻ يوجد ملخص باللغة العربية
Assessing the structural properties of large proteins is important to gain an understanding of their function in, e.g., biological systems or biomedical applications. We propose a method to examine the mechanical properties of proteins subject to applied forces by means of multiscale simulation. We consider both stretching and torsional forces, which can be applied independently of each other. We apply torsional forces to a coarse-grained continuum model of the antibody protein immunoglobulin G (IgG) using Fluctuating Finite Element Analysis and identify the area of strongest deformation. This region is essential to the torsional properties of the molecule as a whole, as it represents the softest, most deformable domain. We subject this part of the molecule to torques and stretching forces on an atomistic level, using molecular dynamics simulations, in order to investigate its torsional properties. We calculate the torsional resistance as a function of the rotation of the domain, while subjecting it to various stretching forces. We learn how these obtained torsion profiles evolve with increasing stretching force and show that they exhibit torsion stiffening, which is in qualitative agreement with experimental findings. We argue that combining the torsion profiles for various stretching forces effectively results in a combined force-torque spectroscopy analysis, which may serve as a mechanical signature for the examined molecule.
We use coarse grained molecular dynamics simulations to investigate diffusion properties of sheared lipid membranes with embedded transmembrane proteins. In membranes without proteins, we find normal in-plane diffusion of lipids in all flow condition
Cytoskeletal motor proteins are involved in major intracellular transport processes which are vital for maintaining appropriate cellular function. The motor exhibits distinct states of motility: active motion along filaments, and effectively stationa
Protein aggregation in cell membrane is vital for the majority of biological functions. Recent experimental results suggest that transmembrane domains of proteins such as $alpha$-helices and $beta$-sheets have different structural rigidities. We use
We study the space of all compact structures on a two-dimensional square lattice of size $N=6times6$. Each structure is mapped onto a vector in $N$-dimensions according to a hydrophobic model. Previous work has shown that the designabilities of struc
The recently introduced method of excess collisions (MEC) is modified to estimate diffusion-controlled reaction times inside systems of arbitrary size. The resulting MEC-E equations contain a set of empirical parameters, which have to be calibrated i