ﻻ يوجد ملخص باللغة العربية
The crystal structure of BiFeO3/BaxSr1-xTiO3 (BFO/BST) heterostructures with x = 0.2, 0.6 and 0.8, grown on single-crystal MgO (001) substrate was investigated by x-ray diffraction and Raman spectroscopy in order to determine the influence of mismatch-induced strains and spontaneous polarization in BST buffer layers on BFO layers. The lattice parameter of the BFO layers was shown to decrease with increasing concentration of Ba ions, despite the increasing in-plain lattice parameters of tetragonal unit cells of BST layers. The rhombohedral angle of the crystal structure of BFO layers demonstrates an increase towards the ideal cubic perovskite structure with the appearance of the built-in electric field, induced by the spontaneous polarization in buffer layers. This result provides a remarkable tool for the control of polarization in BFO layers and other ferroelectric films in general, by changing the built-in electric field from ferroelectric buffer layer without changing a single crystal substrate.
In this work we report on the controlled fabrication of a self-assembled line network in highly epitaxial BiFeO3 thin films on top of LaAlO3 in the kinetically limited grown region by RF sputtering. As previously shown in the case of manganite thin f
We have studied electric-field-induced symmetry lowering in the tetragonal (001)-oriented heteroepitaxial (Ba$_{0.8}$Sr$_{0.2}$)TiO$_3$ thin film deposited on (001)MgO substrate. Polarized micro-Raman spectra were recorded from the film area in betwe
The emergent behaviors in thin films of a multiaxial ferroelectric due to an electrochemical coupling between the rotating polarization and surface ions are explored within the framework of the 2-4 Landau-Ginzburg-Devonshire (LGD) thermodynamic poten
A morphotropic phase boundary driven by epitaxial strain has been observed in a lead-free multiferroic BiFeO3 thin films and the strain-driven phase transitions were widely reported to be iso-symmetric Cc-Cc ones by recent works. In this paper, we su
The Landau theory of phase transitions of Ba0.8Sr0.2TiO3 thin film under external electric field applied in the planar geometry is developed. The interfacial van-der-Waals field Ez=1.1x10^8 V/m oriented normal to the film-substrate interface was intr