ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective Theory Approach to New Physics with Flavour: General Framework and a Leptoquark Example

107   0   0.0 ( 0 )
 نشر من قبل Marzia Bordone
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Extending the Standard Model with higher-dimensional operators in an effective-field-theory (EFT) approach provides a systematic framework to study new-physics (NP) effects from a bottom-up perspective, as long as the NP scale is sufficiently large compared to the energies probed in the experimental observables. However, when taking into account the different quark and lepton flavours, the number of free parameters increases dramatically, which makes generic studies of the NP flavour structure infeasible. In this paper, we address this issue in view of the recently observed flavour anomalies in $B$-meson decays, which we take as a motivation to develop a general framework that allows us to systematically reduce the number of flavour parameters in the EFT. This framework can be easily used in global fits to flavour observables at Belle II and LHCb as well as in analyses of flavour-dependent collider signatures at the LHC. Our formalism represents an extension of the well-known minimal-flavour-violation approach, and uses Froggatt-Nielsen charges to define the flavour power-counting. As a relevant illustration of the formalism, we apply it to the flavour structures which could be induced by a $U_1$ vector leptoquark, which represents one of the possible explanations for the recent hints of flavour non-universality in semileptonic $B$-decays. We study the phenomenological viability of this specific framework performing a fit to low-energy flavour observables.


قيم البحث

اقرأ أيضاً

We describe a framework to develop, implement and validate any perturbative Lagrangian-based particle physics model for further theoretical, phenomenological and experimental studies. The starting point is FeynRules, a Mathematica package that allows to generate Feynman rules for any Lagrangian and then, through dedicated interfaces, automatically pass the corresponding relevant information to any supported Monte Carlo event generator. We prove the power, robustness and flexibility of this approach by presenting a few examples of new physics models (the Hidden Abelian Higgs Model, the general Two-Higgs-Doublet Model, the most general Minimal Supersymmetric Standard Model, the Minimal Higgsless Model, Universal and Large Extra Dimensions, and QCD-inspired effective Lagrangians) and their implementation/validation in FeynArts/FormCalc, CalcHep, MadGraph/MadEvent, and Sherpa.
77 - Andreas Crivellin 2017
LHCb found hints for physics beyond the Standard Model (SM) in $Bto K^*mu^+mu^-$, $R(K)$ and $B_stophimu^+mu^-$. These intriguing hints for NP have recently been confirmed by the LHCb measurement of $R(K^*)$ giving a combined significance for NP abov e the $5,sigma$ level. In addition, the BABAR, BELLE and LHCb results for $Bto D^{(*)}tau u$ also point towards lepton flavour universality (LFU) violating new physics (NP). Furthermore, there is the long-standing discrepancy between the measurement and the theory prediction of the anomalous magnetic moment of the muon ($a_mu$) at the $3,sigma$ level. Concerning NP effects, $bto smu^+mu^-$ data can be naturally explained with a new neutral gauge bosons, i.e. a $Z^prime$ but also with heavy new scalars and fermions contributing via box diagrams. Another promising solution to $bto smu^+mu^-$, which can also explain $Bto D^{(*)}tau u$, are leptoquarks. Interestingly, leptoquarks provide also a viable explanation of $a_mu$ which can be tested via correlated effects in $Ztomu^+mu^-$ at future colliders. Considering leptoquark models, we show that an explanation of $Bto D^{(*)}tau u$ predicts an enhancement of $bto stau^+tau^-$ processes by around three orders of magnitude compared to the SM. In case of a simultaneous explanation of $Bto D^{(*)}tau u$ and $bto smu^+mu^-$ data, sizable effects in $bto staumu$ processes are predicted.
98 - Jure Zupan 2019
We give a brief introduction to flavour physics. The first part covers the flavour structure of the Standard Model, how the Kobayashi-Maskawa mechanism is tested and provides examples of searches for new physics using flavour observables, such as mes on mixing and rare decays. In the second part we give a brief overview of the recent flavour anomalies and how the Higgs can act as a new flavour probe.
117 - Andreas Crivellin 2016
Several experiments observed deviations from the Standard Model (SM) in the flavour sector: LHCb found a $4-5,sigma$ discrepancy compared to the SM in $bto smu^+mu^-$ transitions (recently supported by an Belle analysis) and CMS reported a non-zero m easurement of $htomutau$ with a significance of $2.4,sigma$. Furthermore, BELLE, BABAR and LHCb founds hints for the violation of flavour universality in $Bto D^{(*)}tau u$. In addition, there is the long-standing discrepancy in the anomalous magnetic moment of the muon. Interestingly, all these anomalies are related to muons and taus, while the corresponding electron channels seem to be SM like. This suggests that these deviations from the SM might be correlated and we briefly review some selected models providing simultaneous explanations.
The Leptoquark model has been instrumental in explaining the observed lepton flavour universality violating charged ($bto c$) and neutral ($bto s$) current anomalies that have been the cause for substantial excitement in particle physics recently. In this article we have studied the role of one (designated as $V_2^{frac 43}$) of the components of {boldmath${V}_2$} Vector Leptoquark doublet with electromagnetic charge $frac 43$ in explaining the neutral current ($bto s$) anomalies $R_{K^{(*)}}$ and $B_stomu^+mu^-$. Moreover, we have performed a thorough collider search for this $V_2^{frac 43}$ Leptoquark using $bbar{b} ell^+ ell^-$ ($ellequiv e, mu$) final state at the Large Hadron Collider. From our collider analysis we maximally exclude the mass of the $V_2^{frac 43}$ Leptoquark up to 2340 GeV at 95% confidence level for the 13 TeV Large Hadron Collider for an integrated luminosity of 3000 ${rm fb}^{-1}$. Furthermore, a significant portion of the allowed parameter space that is consistent with the neutral current ($bto s$) observables is excluded by collider analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا