ترغب بنشر مسار تعليمي؟ اضغط هنا

A Case Study on Using Deep Learning for Network Intrusion Detection

64   0   0.0 ( 0 )
 نشر من قبل Gabriel Fernandez
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep Learning has been very successful in many application domains. However, its usefulness in the context of network intrusion detection has not been systematically investigated. In this paper, we report a case study on using deep learning for both supervised network intrusion detection and unsupervised network anomaly detection. We show that Deep Neural Networks (DNNs) can outperform other machine learning based intrusion detection systems, while being robust in the presence of dynamic IP addresses. We also show that Autoencoders can be effective for network anomaly detection.

قيم البحث

اقرأ أيضاً

Recent advances in deep learning renewed the research interests in machine learning for Network Intrusion Detection Systems (NIDS). Specifically, attention has been given to sequential learning models, due to their ability to extract the temporal cha racteristics of Network traffic Flows (NetFlows), and use them for NIDS tasks. However, the applications of these sequential models often consist of transferring and adapting methodologies directly from other fields, without an in-depth investigation on how to leverage the specific circumstances of cybersecurity scenarios; moreover, there is a lack of comprehensive studies on sequential models that rely on NetFlow data, which presents significant advantages over traditional full packet captures. We tackle this problem in this paper. We propose a detailed methodology to extract temporal sequences of NetFlows that denote patterns of malicious activities. Then, we apply this methodology to compare the efficacy of sequential learning models against traditional static learning models. In particular, we perform a fair comparison of a `sequential Long Short-Term Memory (LSTM) against a `static Feedforward Neural Networks (FNN) in distinct environments represented by two well-known datasets for NIDS: the CICIDS2017 and the CTU13. Our results highlight that LSTM achieves comparable performance to FNN in the CICIDS2017 with over 99.5% F1-score; while obtaining superior performance in the CTU13, with 95.7% F1-score against 91.5%. This paper thus paves the way to future applications of sequential learning models for NIDS.
With massive data being generated daily and the ever-increasing interconnectivity of the worlds Internet infrastructures, a machine learning based intrusion detection system (IDS) has become a vital component to protect our economic and national secu rity. In this paper, we perform a comprehensive study on NSL-KDD, a network traffic dataset, by visualizing patterns and employing different learning-based models to detect cyber attacks. Unlike previous shallow learning and deep learning models that use the single learning model approach for intrusion detection, we adopt a hierarchy strategy, in which the intrusion and normal behavior are classified firstly, and then the specific types of attacks are classified. We demonstrate the advantage of the unsupervised representation learning model in binary intrusion detection tasks. Besides, we alleviate the data imbalance problem with SVM-SMOTE oversampling technique in 4-class classification and further demonstrate the effectiveness and the drawback of the oversampling mechanism with a deep neural network as a base model.
Purveyors of malicious network attacks continue to increase the complexity and the sophistication of their techniques, and their ability to evade detection continues to improve as well. Hence, intrusion detection systems must also evolve to meet thes e increasingly challenging threats. Machine learning is often used to support this needed improvement. However, training a good prediction model can require a large set of labelled training data. Such datasets are difficult to obtain because privacy concerns prevent the majority of intrusion detection agencies from sharing their sensitive data. In this paper, we propose the use of mimic learning to enable the transfer of intrusion detection knowledge through a teacher model trained on private data to a student model. This student model provides a mean of publicly sharing knowledge extracted from private data without sharing the data itself. Our results confirm that the proposed scheme can produce a student intrusion detection model that mimics the teacher model without requiring access to the original dataset.
Attackers have developed ever more sophisticated and intelligent ways to hack information and communication technology systems. The extent of damage an individual hacker can carry out upon infiltrating a system is well understood. A potentially catas trophic scenario can be envisaged where a nation-state intercepting encrypted financial data gets hacked. Thus, intelligent cybersecurity systems have become inevitably important for improved protection against malicious threats. However, as malware attacks continue to dramatically increase in volume and complexity, it has become ever more challenging for traditional analytic tools to detect and mitigate threat. Furthermore, a huge amount of data produced by large networks has made the recognition task even more complicated and challenging. In this work, we propose an innovative statistical analysis driven optimized deep learning system for intrusion detection. The proposed intrusion detection system (IDS) extracts optimized and more correlated features using big data visualization and statistical analysis methods (human-in-the-loop), followed by a deep autoencoder for potential threat detection. Specifically, a pre-processing module eliminates the outliers and converts categorical variables into one-hot-encoded vectors. The feature extraction module discard features with null values and selects the most significant features as input to the deep autoencoder model (trained in a greedy-wise manner). The NSL-KDD dataset from the Canadian Institute for Cybersecurity is used as a benchmark to evaluate the feasibility and effectiveness of the proposed architecture. Simulation results demonstrate the potential of our proposed system and its outperformance as compared to existing state-of-the-art methods and recently published novel approaches. Ongoing work includes further optimization and real-time evaluation of our proposed IDS.
Cybersecurity is a domain where the data distribution is constantly changing with attackers exploring newer patterns to attack cyber infrastructure. Intrusion detection system is one of the important layers in cyber safety in todays world. Machine le arning based network intrusion detection systems started showing effective results in recent years. With deep learning models, detection rates of network intrusion detection system are improved. More accurate the model, more the complexity and hence less the interpretability. Deep neural networks are complex and hard to interpret which makes difficult to use them in production as reasons behind their decisions are unknown. In this paper, we have used deep neural network for network intrusion detection and also proposed explainable AI framework to add transparency at every stage of machine learning pipeline. This is done by leveraging Explainable AI algorithms which focus on making ML models less of black boxes by providing explanations as to why a prediction is made. Explanations give us measurable factors as to what features influence the prediction of a cyberattack and to what degree. These explanations are generated from SHAP, LIME, Contrastive Explanations Method, ProtoDash and Boolean Decision Rules via Column Generation. We apply these approaches to NSL KDD dataset for intrusion detection system and demonstrate results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا