ﻻ يوجد ملخص باللغة العربية
We consider an epidemic model with direct transmission given by a system of nonlinear partial differential equations and study the existence of traveling wave solutions. When the basic reproductive number of the considered model is less than one, we show that there is no nontrivial traveling wave solution. On the other hand, when the basic reproductive number is greater than one, we prove that there is a minimum wave speed $c^*$ such that the system has a traveling wave solution with speed $c$ connecting both equilibrium points for any $cge c^*$. Moreover, under suitable assumption on the diffusion rates, we show that there is no traveling wave solution with speed less than $c^*$. We conclude with numerical simulations to illustrate our findings. The numerical experiments supports the validity of our theoretical results.
We consider traveling fronts to the nonlocal bistable equation. We do not assume that the Borel-measure is absolutely continuous with respect to the Lebesgue measure. We show that there is a traveling wave solution with monotone profile. In order to
This paper is concerned with the conditions of existence and nonexistence of traveling wave solutions (TWS) for a class of discrete diffusive epidemic models. We find that the existence of TWS is determined by the so-called basic reproduction number
In this work, we investigate the system of three species ecological model involving one predator-prey subsystem coupling with a generalist predator with negative effect on the prey. Without diffusive terms, all global dynamics of its corresponding re
This paper concerns a time-independent thermoelectric model with two different boundary conditions. The model is a nonlinear coupled system of the Maxwell equations and an elliptic equation. By analyzing carefully the nonlinear structure of the equat
In this article we prove the global existence of weak solutions for a diffuse interface model in a bounded domain (both in 2D and 3D) involving incompressible magnetic fluids with unmatched densities. The model couples the incompressible Navier-Stoke