ترغب بنشر مسار تعليمي؟ اضغط هنا

Rotation Measure synthesis applied on synthetic SKA images of galaxy clusters

104   0   0.0 ( 0 )
 نشر من قبل Francesca Loi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Future observations with next generation radio telescopes will help us to understand the presence and the evolution of magnetic fields in galaxy clusters through the determination of the so-called Rotation Measure (RM). In this work, we applied the RM-synthesis technique on synthetic SKA1-MID radio images of a pair of merging galaxy clusters, measured between 950 and 1750 MHz with a resolution of 10 arcsec and a thermal noise of 0.1$mu$Jy/beam. The results of our RM-synthesis analysis are compared to the simulations input parameters. We study two cases: one with radio haloes at the cluster centres, and another without. We found that the information obtained with the RM-synthesis is in general agreement with the input information. Some discrepancies are however present. We characterise them in this work, with the final goal of determining the potential impact of SKA1-MID on the study of cluster magnetic fields.

قيم البحث

اقرأ أيضاً

We study the magnetic fields in galaxy clusters through Faraday rotation measurements crossing systems in different dynamical states. We confirm that magnetic fields are present in those systems and analyze the difference between relaxed and unrelaxe d samples with respect to the dispersion between their inherent Faraday Rotation measurements. We found an increase of this RM dispersion and a higher RM overlapping frequency for unrelaxed clusters. This fact suggests that a large scale physical process is involved in the nature of unrelaxed systems and possible depolarization effects are present in the relaxed ones. We show that dynamically unrelaxed systems can enhance magnetic fields to large coherence lengths. In contrast, the results for relaxed systems suggests that small-scale dynamo can be a dominant mechanism for sustaining magnetic fields, leading to intrinsic depolarization.
436 - Hrant M. Tovmassian 2015
The method for detection of the galaxy cluster rotation based on the study of distribution of member galaxies with velocities lower and higher of the cluster mean velocity over the cluster image is proposed. The search for rotation is made for flat c lusters with $a/b>1.8$ and BMI type clusters which are expected to be rotating. For comparison there were studied also round clusters and clusters of NBMI type, the second by brightness galaxy in which does not differ significantly from the cluster cD galaxy. Seventeen out of studied 65 clusters are found to be rotating. It was found that the detection rate is sufficiently high for flat clusters, over 60%, and clusters of BMI type with dominant cD galaxy, ~ 35%. The obtained results show that clusters were formed from the huge primordial gas clouds and preserved the rotation of the primordial clouds, unless they did not have merging with other clusters and groups of galaxies, in the result of which the rotation has been prevented.
We present a study on the coherent rotation of the intracluster medium and dark matter components of simulated galaxy clusters extracted from a volume-limited sample of the MUSIC project. The set is re-simulated with three different recipes for the g as physics: $(i)$ non-radiative, $(ii)$ radiative without AGN feedback, and $(iii)$ radiative with AGN feedback. Our analysis is based on the 146 most massive clusters identified as relaxed, 57 per cent of the total sample. We classify these objects as rotating and non-rotating according to the gas spin parameter, a quantity that can be related to cluster observations. We find that 4 per cent of the relaxed sample is rotating according to our criterion. By looking at the radial profiles of their specific angular momentum vector, we find that the solid body model is not a suitable description of rotational motions. The radial profiles of the velocity of the dark matter show a prevalence of the random velocity dispersion. Instead, the intracluster medium profiles are characterized by a comparable contribution from the tangential velocity and the dispersion. In general, the dark matter component dominates the dynamics of the clusters, as suggested by the correlation between its angular momentum and the gas one, and by the lack of relevant differences among the three sets of simulations.
Faraday Rotation Measure (RM) Synthesis, as a method for analyzing multi-channel observations of polarized radio emission to investigate galactic magnetic fields structures, requires the definition of complex polarized intensity in the range of the n egative lambda square. We introduce a simple method for continuation of the observed complex polarized intensity into this domain using symmetry arguments. The method is suggested in context of magnetic field recognition in galactic disks where the magnetic field is supposed to have a maximum in the equatorial plane. The method is quite simple when applied to a single Faraday-rotating structure on the line of sight. Recognition of several structures on the same line of sight requires a more sophisticated technique. We also introduce a wavelet-based algorithm which allows us to consider a set of isolated structures. The method essentially improves the possibilities for reconstruction of complicated Faraday structures using the capabilities of modern radio telescopes.
65 - Ruta Kale 2016
The intra-cluster and inter-galactic media (ICM, IGM) that pervade the large scale structure of the Universe are known to be magnetised at sub-micro Gauss to micro Gauss levels and to contain cosmic rays (CRs). The acceleration of CRs and their evolu tion along with that of magnetic fields in these media is still not well understood. Diffuse radio sources of synchrotron origin associated with the ICM such as radio halos, relics and mini-halos are direct probes of the underlying mechanisms of CR acceleration. Observations with radiotelescopes such as the GMRT, the VLA and the WSRT (0.15 - 2 GHz) have revealed scaling relations between the thermal and non-thermal properties of clusters and favour the role of shocks in the formation of radio relics and of turbulent re-acceleration in the formation of radio halos and mini-halos. Due to the limitations of current radio telescopes, wide-band studies and exploration of low mass and supercluster-scale systems is difficult. The Square Kilometer Array (SKA) is a next generation radio telescope that will operate in the frequency range of 0.05 - 20 GHz with unprecedented sensitivities and resolutions. The expected detection limits of SKA will reveal a few hundred to thousand new radio halos, relics and mini-halos providing the first large and comprehensive samples for their study. The wide frequency coverage along with sensitivity to extended structures will be able to constrain the CR acceleration mechanisms. The higher frequency (> 5 GHz) observations will be able to use the Sunyaev-Zeldovich effect to probe the ICM pressure in addition to the tracers such as lobes of head-tail radio sources. The SKA also opens prospects to detect the off-state radio emission from the ICM predicted by the hadronic models and the turbulent re-acceleration models. [abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا