ﻻ يوجد ملخص باللغة العربية
We present data driven kinematic models for the motion of bubbles in high-Re turbulent fluid flows based on recurrent neural networks with long-short term memory enhancements. The models extend empirical relations, such as Maxey-Riley (MR) and its variants, whose applicability is limited when either the bubble size is large or the flow is very complex. The recurrent neural networks are trained on the trajectories of bubbles obtained by Direct Numerical Simulations (DNS) of the Navier Stokes equations for a two-component incompressible flow model. Long short term memory components exploit the time history of the flow field that the bubbles have encountered along their trajectories and the networks are further augmented by imposing rotational invariance to their structure. We first train and validate the formulated model using DNS data for a turbulent Taylor-Green vortex. Then we examine the model predictive capabilities and its generalization to Reynolds numbers that are different from those of the training data on benchmark problems, including a steady (Hills spherical vortex) and an unsteady (Gaussian vortex ring) flow field. We find that the predictions of the developed model are significantly improved compared with those obtained by the MR equation. Our results indicate that data-driven models with history terms are well suited in capturing the trajectories of bubbles in turbulent flows.
The nonlinear and nonlocal coupling of vorticity and strain-rate constitutes a major hindrance in understanding the self-amplification of velocity gradients in turbulent fluid flows. Utilizing highly-resolved direct numerical simulations of isotropic
We present two models for turbulent flows with periodic boundary conditions and with either rotation, or a magnetic field in the magnetohydrodynamics (MHD) limit. One model, based on Lagrangian averaging, can be viewed as an invariant-preserving filt
We investigate the capability of neural network-based model order reduction, i.e., autoencoder (AE), for fluid flows. As an example model, an AE which comprises of a convolutional neural network and multi-layer perceptrons is considered in this study
Modeling realistic fluid and plasma flows is computationally intensive, motivating the use of reduced-order models for a variety of scientific and engineering tasks. However, it is challenging to characterize, much less guarantee, the global stabilit
We present a new turbulent data reconstruction method with supervised machine learning techniques inspired by super resolution and inbetweening, which can recover high-resolution turbulent flows from grossly coarse flow data in space and time. For th