ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature-programmed reduction and dispersive X-ray absorption spectroscopy studies of CeO2-based nanopowders for intermediate-temperature Solid-Oxide Fuel Cell anodes

52   0   0.0 ( 0 )
 نشر من قبل Joaquin Sacanell
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we study the influence of the average crystallite size and dopant oxide on the reducibility of CeO2-based nanomaterials. Samples were prepared from commercial Gd2O3-, Sm2O3- and Y2O3-doped CeO2 powders by calcination at different temperatures ranging between 400 and 900C and characterized by X-ray powder diffraction, transmission electron microscopy and BET specific surface area. The reducibility of the samples was analyzed by temperature-programmed reduction and in situ dispersive X-ray absorption spectroscopy techniques. Our results clearly demonstrate that samples treated at lower temperatures, of smallest average crystallite size and highest specific surface areas, exhibit the best performance, while Gd2O3-doped ceria materials display higher reducibility than Sm2O3- and Y2O3-doped CeO2.

قيم البحث

اقرأ أيضاً

Iron-oxide nanoparticles have been synthesized by high temperature arc plasma route with different plasma currents and characterized for their structure, morphology and local atomic order. Fe K-edge x-ray absorption spectra reveal distinct local stru cture of the samples grown with different plasma currents. We have shown that the local disorder is higher for the higher plasma current grown samples that also have a larger average particle-size. The results provide useful information to control structural and morphological properties of nanoparticles grown by high temperature plasma synthesis process.
In this work we outline the mechanisms contributing to the oxygen reduction reaction in nanostructured cathodes of La0.8Sr0.2MnO3 (LSM) for Solid Oxide Fuel Cells (SOFC). These cathodes, developed from LSM nanostructured tubes, can be used at lower t emperatures compared to microstructured ones, and this is a crucial fact to avoid the degradation of the fuel cell components. This reduction of the operating temperatures stems mainly from two factors: i) the appearance of significant oxide ion diffusion through the cathode material in which the nanostructure plays a key role and ii) an optimized gas phase diffusion of oxygen through the porous structure of the cathode, which becomes negligible. A detailed analysis of our Electrochemical Impedance Spectroscopy supported by first principles calculations point towards an improved overall cathodic performance driven by a fast transport of oxide ions through the cathode surface.
In this work we studied the influence of particle size and agglomeration in the performance of solid oxide fuel cell cathodes made with nanoparticles of La0.8Sr0.2MnO3. We followed two synthesis routes based on the Liquid Mix method. In both procedur es we introduced additional reagents in order to separated the manganite particles. We evaluated cathodic performance by Electrochemical Impedance Spectroscopy in symmetrical (CATHODE/ELECTROLYTE/CATHODE) cells. Particle size was tuned by the temperature used for cathode sintering. Our results show that deagglomeration of the particles, serves to improve the cathodes performance. However, the dependence of the performance with the size of the particles is not clear, as different trends were obtained for each synthesis route. As a common feature, the cathodes with the lowest area specific resistance are the ones sintered at the largest temperature. This result indicates that an additional factor related with the quality of the cathode/electrolyte sintering, is superimposed with the influence of particle size, however further work is needed to clarify this issue. The enhancement obtained by deagglomeration suggest that the use of this kind of methods deserved to be considered to develop high performance electrodes for solid oxide fuel cells.
We report on the lattice evolution of BiFeO3 as function of temperature using far infrared emissivity, reflectivity, and X-ray absorption local structure. A power law fit to the lowest frequency soft phonon in the magnetic ordered phase yields an exp onent {beta}=0.25 as for a tricritical point. At about 200 K below TN~640 K it ceases softening as consequence of BiFeO3 metastability. We identified this temperature as corresponding to a crossover transition to an order-disorder regime. Above ~700 K strong band overlapping, merging, and smearing of modes are consequence of thermal fluctuations and chemical disorder. Vibrational modes show band splits in the ferroelectric phase as emerging from triple degenerated species as from a paraelectric cubic phase above TC~1090 K. Temperature dependent X-ray absorption near edge structure (XANES) at the Fe K-edge shows that lower temperature Fe3+ turns into Fe2+. While this matches the FeO wustite XANES profile, the Bi LIII-edge downshift suggests a high temperature very complex bond configuration at the distorted A perovskite site. Overall, our local structural measurements reveal high temperature defect-induced irreversible lattice changes, below, and above the ferroelectric transition, in an environment lacking of long-range coherence. We did not find an insulator to metal transition prior to melting.
Transparent Al2O3 ceramics have attracted considerable interest for use in a wide range of optical, electronic and structural applications. The fabrication of these ceramics using powder metallurgy processes requires the development of theoretical ap proaches to the compaction of nanopowders. In this work, we investigate the compaction processes of two model granular systems imitating Al2O3 nanosized powders. System I is a loosely aggregated powder, and system II is a powder strongly inclined to agglomeration (for instance, calcined powder). The processes of isostatical (uniform), biaxial, and uniaxial compaction as well as uniaxial compaction with simultaneous shear deformation are studied. The energy parameters of compaction such as the energy change of elastic interparticle interactions and dispersion interactions, dissipative energy losses related to the processes of interparticle friction, and the total work of compaction are calculated for all the processes. The nonapplicability of the associated flow rule to the description of deformation processes of oxide nanopowders is shown and an alternative plastic flow rule is suggested. A complete system of determining the relationship of the flow including analytical approximations of yield surfaces is obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا