ﻻ يوجد ملخص باللغة العربية
Two-dimensional (2D) transition metal nitrides (TMNs) are new members in the 2D materials family with a wide range of applications. Particularly, highly crystalline and large area thin films of TMNs are potentially promising for applications in electronic and optoelectronic devices; however, the synthesis of such TMNs has not yet been achieved. Here, we report the synthesis of few-nanometer thin Mo5N6 crystals with large area and high quality via in situ chemical conversion of layered MoS2 crystals. The structure and quality of the ultrathin Mo5N6 crystal are confirmed using transmission electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The large lateral dimensions of Mo5N6 crystals are inherited from the MoS2 crystals that are used for the conversion. Atomic force microscopy characterization reveals the thickness of Mo5N6 crystals is reduced to about 1/3 of the MoS2 crystal. Electrical measurements show the obtained Mo5N6 samples are metallic with high electrical conductivity (~ 100 {Omega} sq-1), which is comparable to graphene. The versatility of this general approach is demonstrated by expanding the method to synthesize W5N6 and TiN. Our strategy offers a new direction for preparing 2D TMNs with desirable characteristics, opening a door for studying fundamental physics and facilitating the development of next generation electronics.
Two-dimensional (2d) nano-electronics, plasmonics, and emergent phases require clean and local charge control, calling for layered, crystalline acceptors or donors. Our Raman, photovoltage, and electrical conductance measurements combined with textit
Scalable substitutional doping of two-dimensional (2D) transition metal dichalcogenides (TMDCs) is a prerequisite to developing next-generation logic and memory devices based on 2D materials. To date, doping efforts are still nascent. Here, we report
Exploratory synthesis in novel chemical spaces is the essence of solid-state chemistry. However, uncharted chemical spaces can be difficult to navigate, especially when materials synthesis is challenging. Nitrides represent one such space, where stri
Manipulating materials with atomic-scale precision is essential for the development of next-generation material design toolbox. Tremendous efforts have been made to advance the compositional, structural, and spatial accuracy of material deposition an
Extraction of non-equilibrium hot carriers generated by plasmon decay in metallic nanostructures is an increasingly exciting prospect for utilizing plasmonic losses, but the search for optimum plasmonic materials with long-lived carriers is ongoing.