ﻻ يوجد ملخص باللغة العربية
It has long been thought that starspots are not present in the A and B stars because magnetic fields cannot be generated in stars with radiative envelopes. Space observations show that a considerable fraction of these stars vary in light with periods consistent with the expected rotation periods. Here we show that the photometric periods are the same as the rotation periods and that starspots are the likely cause for the light variations. This discovery has wide-ranging implications and suggests that a major revision of the physics of hot stellar envelopes may be required.
Hot luminous stars show a variety of phenomena in their photospheres and winds which still lack clear physical explanation. Among these phenomena are photospheric turbulence, line profile variability (LPV), non-thermal emission, non-radial pulsations
About 22000 Kepler stars and nearly 60000 TESS stars from sectors 1-24 have been classified according to variability type. A large proportion of stars of all spectral types appear to have periods consistent with the expected rotation periods. A previ
Blue horizontal-branch stars are Population II objects which are burning helium in their core and possess a hydrogen-burning shell and radiative envelope. Because of their low rotational velocities, diffusion has been predicted to work in their atmos
Six decades and counting, the formation of hot ~20,000-30,000 K Extreme Horizontal Branch (EHB) stars in Galactic Globular Clusters remains one of the most elusive quests in stellar evolutionary theory. Here we report on two discoveries shattering th
Mass-loss rate is one of the most important stellar parameters. We aim to provide mass-loss rates as a function of subdwarf parameters and to apply the formula for individual subdwarfs, to predict the wind terminal velocities, to estimate the influen