ﻻ يوجد ملخص باللغة العربية
Recent collapses of many fisheries across the globe have challenged the mathematical approach to these systems through classic bioeconomic models. Decimated populations did not recover as fast as predicted by these models and depensatory effects were introduced to better fit the dynamics at low population abundances. Alternative to depensation, modeling captures by non-linear harvesting functions produces equivalent outcomes at small abundances, and the dynamics undergoes a bifurcation leading to population collapse and recovery once catching efforts are above or below certain thresholds, respectively. The time that a population takes to undergo these transitions has been mostly overlooked in bioeconomic contexts, though. In this work we quantify analytically and numerically the times associated to these collapse and recovery transitions in a model incorporating non-linear harvesting and immigration in the presence and absence of demographic stochasticity. Counterintuitively, although species at low abundances are prone to extinction due to demographic stochasticity, our results show that stochastic collapse and recovery times are upper bounded by their deterministic estimates. This occurs over the full range of immigration rates. Our work may have relevant quantitative implications in the context of fishery management and rebuilding.
We study simple stochastic scenarios, based on birth-and-death Markovian processes, that describe populations with Allee effect, to account for the role of demographic stochasticity. In the mean-field deterministic limit we recover well-known determi
We consider non-demographic noise in the form of uncertainty in the reaction step size, and reveal a dramatic effect this noise may have on the stability of self-regulating populations. Employing the reaction scheme mA->kA, but allowing, e.g., the pr
Inference with population genetic data usually treats the population pedigree as a nuisance parameter, the unobserved product of a past history of random mating. However, the history of genetic relationships in a given population is a fixed, unobserv
SARS-CoV-2 causing COVID-19 disease has moved rapidly around the globe, infecting millions and killing hundreds of thousands. The basic reproduction number, which has been widely used and misused to characterize the transmissibility of the virus, hid
We investigate the competing effects and relative importance of intrinsic demographic and environmental variability on the evolutionary dynamics of a stochastic two-species Lotka-Volterra model by means of Monte Carlo simulations on a two-dimensional