ﻻ يوجد ملخص باللغة العربية
Origami, where two-dimensional sheets are folded into complex structures, is proving to be rich with combinatorial and geometric structure, most of which remains to be fully understood. In this paper we consider emph{flat origami}, where the sheet of material is folded into a two-dimensional object, and consider the mountain (convex) and valley (concave) creases made by such foldings, called a emph{MV assignment} of the crease pattern. We establish a method to, given a flat-foldable crease pattern $C$ under certain conditions, create a planar graph $C^*$ whose 3-colorings are in one-to-one correspondence with the locally-valid MV assignments of $C$. This reduces the general, unsolved problem of enumerating locally-valid MV assignments to the enumeration of 3-colorings of graphs.
Rigidly and flat-foldable quadrilateral mesh origami is the class of quadrilateral mesh crease patterns with one fundamental property: the patterns can be folded from flat to fully-folded flat by a continuous one-parameter family of piecewise affine
DP-coloring is a generalization of list coloring, which was introduced by Dvov{r}{a}k and Postle [J. Combin. Theory Ser. B 129 (2018) 38--54]. Zhang [Inform. Process. Lett. 113 (9) (2013) 354--356] showed that every planar graph with neither adjacent
We survey more recent attempts at enumerating the number of mountain-valley assignments that allow a given crease pattern to locally fold flat. In particular, we solve this problem for square twist tessellations and generalize the method used to a br
For a given graph $G$, the least integer $kgeq 2$ such that for every Abelian group $mathcal{G}$ of order $k$ there exists a proper edge labeling $f:E(G)rightarrow mathcal{G}$ so that $sum_{xin N(u)}f(xu) eq sum_{xin N(v)}f(xv)$ for each edge $uvin E
The textit{$k$-weak-dynamic number} of a graph $G$ is the smallest number of colors we need to color the vertices of $G$ in such a way that each vertex $v$ of degree $d(v)$ sees at least $rm{min}{k,d(v)}$ colors on its neighborhood. We use reducible