ﻻ يوجد ملخص باللغة العربية
We show how a finite number of conservation laws can globally `shatter Hilbert space into exponentially many dynamically disconnected subsectors, leading to an unexpected dynamics with features reminiscent of both many body localization and quantum scars. A crisp example of this phenomenon is provided by a `fractonic model of quantum dynamics constrained to conserve both charge and dipole moment. We show how the Hilbert space of the fractonic model dynamically fractures into disconnected emergent subsectors within a particular charge and dipole symmetry sector. This shattering can occur in arbitrary spatial dimensions. A large number of the emergent subsectors, exponentially many in system volume, have dimension one and exhibit strictly localized quantum dynamics---even in the absence of spatial disorder and in the presence of temporal noise. Other emergent subsectors display non-trivial dynamics and may be constructed by embedding finite sized non-trivial blocks into the localized subspace. While `fractonic models provide a particularly clean realization, the shattering phenomenon is more general, as we discuss. We also discuss how the key phenomena may be readily observed in near term ultracold atom experiments. In experimental realizations, the conservation laws are approximate rather than exact, so the localization only survives up to a prethermal timescale that we estimate. We comment on the implications of these results for recent predictions of Bloch/Stark many-body localization.
We study the dynamics of an interacting quantum spin chain under the application of a linearly increasing field. This model exhibits a type of localization known as Stark many-body localization. The dynamics shows a strong dependence on the initial c
We examine the many-body localization (MBL) phase transition in one-dimensional quantum systems with quenched randomness and short-range interactions. Following recent works, we use a strong-randomness renormalization group (RG) approach where the ph
Using a new approximate strong-randomness renormalization group (RG), we study the many-body localized (MBL) phase and phase transition in one-dimensional quantum systems with short-range interactions and quenched disorder. Our RG is built on those o
A wave function exposed to measurements undergoes pure state dynamics, with deterministic unitary and probabilistic measurement induced state updates, defining a quantum trajectory. For many-particle systems, the competition of these different elemen
Measurement-driven transitions between extensive and sub-extensive scaling of the entanglement entropy receive interest as they illuminate the intricate physics of thermalization and control in open interacting quantum systems. Whilst this transition