ترغب بنشر مسار تعليمي؟ اضغط هنا

Localization from Hilbert space shattering: from theory to physical realizations

127   0   0.0 ( 0 )
 نشر من قبل Vedika Khemani
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show how a finite number of conservation laws can globally `shatter Hilbert space into exponentially many dynamically disconnected subsectors, leading to an unexpected dynamics with features reminiscent of both many body localization and quantum scars. A crisp example of this phenomenon is provided by a `fractonic model of quantum dynamics constrained to conserve both charge and dipole moment. We show how the Hilbert space of the fractonic model dynamically fractures into disconnected emergent subsectors within a particular charge and dipole symmetry sector. This shattering can occur in arbitrary spatial dimensions. A large number of the emergent subsectors, exponentially many in system volume, have dimension one and exhibit strictly localized quantum dynamics---even in the absence of spatial disorder and in the presence of temporal noise. Other emergent subsectors display non-trivial dynamics and may be constructed by embedding finite sized non-trivial blocks into the localized subspace. While `fractonic models provide a particularly clean realization, the shattering phenomenon is more general, as we discuss. We also discuss how the key phenomena may be readily observed in near term ultracold atom experiments. In experimental realizations, the conservation laws are approximate rather than exact, so the localization only survives up to a prethermal timescale that we estimate. We comment on the implications of these results for recent predictions of Bloch/Stark many-body localization.



قيم البحث

اقرأ أيضاً

We study the dynamics of an interacting quantum spin chain under the application of a linearly increasing field. This model exhibits a type of localization known as Stark many-body localization. The dynamics shows a strong dependence on the initial c onditions, indicating that the system violates the conventional (strong) eigenstate thermalization hypothesis at any finite gradient of the field. This is contrary to reports of a numerically observed ergodic phase. Therefore, the localization is crucially distinct from disorder-driven many-body localization, in agreement with recent predictions on the basis of localization via Hilbert-space shattering.
We examine the many-body localization (MBL) phase transition in one-dimensional quantum systems with quenched randomness and short-range interactions. Following recent works, we use a strong-randomness renormalization group (RG) approach where the ph ase transition is due to the so-called avalanche instability of the MBL phase. We show that the critical behavior can be determined analytically within this RG. On a rough $textit{qualitative}$ level the RG flow near the critical fixed point is similar to the Kosterlitz-Thouless (KT) flow as previously shown, but there are important differences in the critical behavior. Thus we show that this MBL transition is in a new universality class that is different from KT. The divergence of the correlation length corresponds to critical exponent $ u rightarrow infty$, but the divergence is weaker than for the KT transition.
Using a new approximate strong-randomness renormalization group (RG), we study the many-body localized (MBL) phase and phase transition in one-dimensional quantum systems with short-range interactions and quenched disorder. Our RG is built on those o f Zhang $textit{et al.}$ [1] and Goremykina $textit{et al.}$ [2], which are based on thermal and insulating blocks. Our main addition is to characterize each insulating block with two lengths: a physical length, and an internal decay length $zeta$ for its effective interactions. In this approach, the MBL phase is governed by a RG fixed line that is parametrized by a global decay length $tilde{zeta}$, and the rare large thermal inclusions within the MBL phase have a fractal geometry. As the phase transition is approached from within the MBL phase, $tilde{zeta}$ approaches the finite critical value corresponding to the avalanche instability, and the fractal dimension of large thermal inclusions approaches zero. Our analysis is consistent with a Kosterlitz-Thouless-like RG flow, with no intermediate critical MBL phase.
A wave function exposed to measurements undergoes pure state dynamics, with deterministic unitary and probabilistic measurement induced state updates, defining a quantum trajectory. For many-particle systems, the competition of these different elemen ts of dynamics can give rise to a scenario similar to quantum phase transitions. To access it despite the randomness of single quantum trajectories, we construct an $n$-replica Keldysh field theory for the ensemble average of the $n$-th moment of the trajectory projector. A key finding is that this field theory decouples into one set of degrees of freedom that heats up indefinitely, while $n-1$ others can be cast into the form of pure state evolutions generated by an effective non-Hermitian Hamiltonian. This decoupling is exact for free theories, and useful for interacting ones. In particular, we study locally measured Dirac fermions in $(1+1)$ dimensions, which can be bosonized to a monitored interacting Luttinger liquid at long wavelengths. For this model, the non-Hermitian Hamiltonian corresponds to a quantum Sine-Gordon model with complex coefficients. A renormalization group analysis reveals a gapless critical phase with logarithmic entanglement entropy growth, and a gapped area law phase, separated by a Berezinskii-Kosterlitz-Thouless transition. The physical picture emerging here is a pinning of the trajectory wave function into eigenstates of the measurement operators upon increasing the monitoring rate.
Measurement-driven transitions between extensive and sub-extensive scaling of the entanglement entropy receive interest as they illuminate the intricate physics of thermalization and control in open interacting quantum systems. Whilst this transition is well established for stroboscopic measurements in random quantum circuits, a crucial link to physical settings is its extension to continuous observations, where for an integrable model it has been shown that the transition changes its nature and becomes immediate. Here, we demonstrate that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable, and show that it is smoothly connected to the transition in the stroboscopic models. This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا