ترغب بنشر مسار تعليمي؟ اضغط هنا

Computing the largest bond of a graph

69   0   0.0 ( 0 )
 نشر من قبل Ueverton Souza
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A bond of a graph $G$ is an inclusion-wise minimal disconnecting set of $G$, i.e., bonds are cut-sets that determine cuts $[S,Vsetminus S]$ of $G$ such that $G[S]$ and $G[Vsetminus S]$ are both connected. Given $s,tin V(G)$, an $st$-bond of $G$ is a bond whose removal disconnects $s$ and $t$. Contrasting with the large number of studies related to maximum cuts, there are very few results regarding the largest bond of general graphs. In this paper, we aim to reduce this gap on the complexity of computing the largest bond and the largest $st$-bond of a graph. Although cuts and bonds are similar, we remark that computing the largest bond of a graph tends to be harder than computing its maximum cut. We show that {sc Largest Bond} remains NP-hard even for planar bipartite graphs, and it does not admit a constant-factor approximation algorithm, unless $P = NP$. We also show that {sc Largest Bond} and {sc Largest $st$-Bond} on graphs of clique-width $w$ cannot be solved in time $f(w)times n^{o(w)}$ unless the Exponential Time Hypothesis fails, but they can be solved in time $f(w)times n^{O(w)}$. In addition, we show that both problems are fixed-parameter tractable when parameterized by the size of the solution, but they do not admit polynomial kernels unless NP $subseteq$ coNP/poly.



قيم البحث

اقرأ أيضاً

Quasi-median graphs are a tool commonly used by evolutionary biologists to visualise the evolution of molecular sequences. As with any graph, a quasi-median graph can contain cut vertices, that is, vertices whose removal disconnect the graph. These v ertices induce a decomposition of the graph into blocks, that is, maximal subgraphs which do not contain any cut vertices. Here we show that the special structure of quasi-median graphs can be used to compute their blocks without having to compute the whole graph. In particular we present an algorithm that, for a collection of $n$ aligned sequences of length $m$, can compute the blocks of the associated quasi-median graph together with the information required to correctly connect these blocks together in run time $mathcal O(n^2m^2)$, independent of the size of the sequence alphabet. Our primary motivation for presenting this algorithm is the fact that the quasi-median graph associated to a sequence alignment must contain all most parsimonious trees for the alignment, and therefore precomputing the blocks of the graph has the potential to help speed up any method for computing such trees.
Computing cohesive subgraphs is a central problem in graph theory. While many formulations of cohesive subgraphs lead to NP-hard problems, finding a densest subgraph can be done in polynomial time. As such, the densest subgraph model has emerged as t he most popular notion of cohesiveness. Recently, the data mining community has started looking into the problem of computing k densest subgraphs in a given graph, rather than one, with various restrictions on the possible overlap between the subgraphs. However, there seems to be very little known on this important and natural generalization from a theoretical perspective. In this paper we hope to remedy this situation by analyzing three natural variants of the k densest subgraphs problem. Each variant differs depending on the amount of overlap that is allowed between the subgraphs. In one extreme, when no overlap is allowed, we prove that the problem is NP-hard for k >= 3. On the other extreme, when overlap is allowed without any restrictions and the solution subgraphs only have to be distinct, we show that the problem is fixed-parameter tractable with respect to k, and admits a PTAS for constant k. Finally, when a limited of overlap is allowed between the subgraphs, we prove that the problem is NP-hard for k = 2.
The $r$-th iterated line graph $L^{r}(G)$ of a graph $G$ is defined by: (i) $L^{0}(G) = G$ and (ii) $L^{r}(G) = L(L^{(r- 1)}(G))$ for $r > 0$, where $L(G)$ denotes the line graph of $G$. The Hamiltonian Index $h(G)$ of $G$ is the smallest $r$ such th at $L^{r}(G)$ has a Hamiltonian cycle. Checking if $h(G) = k$ is NP-hard for any fixed integer $k geq 0$ even for subcubic graphs $G$. We study the parameterized complexity of this problem with the parameter treewidth, $tw(G)$, and show that we can find $h(G)$ in time $O*((1 + 2^{(omega + 3)})^{tw(G)})$ where $omega$ is the matrix multiplication exponent and the $O*$ notation hides polynomial factors in input size. The NP-hard Eulerian Steiner Subgraph problem takes as input a graph $G$ and a specified subset $K$ of terminal vertices of $G$ and asks if $G$ has an Eulerian (that is: connected, and with all vertices of even degree.) subgraph $H$ containing all the terminals. A second result (and a key ingredient of our algorithm for finding $h(G)$) in this work is an algorithm which solves Eulerian Steiner Subgraph in $O*((1 + 2^{(omega + 3)})^{tw(G)})$ time.
231 - Russell K. Standish 2009
The graph isomorphism problem is of practical importance, as well as being a theoretical curiosity in computational complexity theory in that it is not known whether it is $NP$-complete or $P$. However, for many graphs, the problem is tractable, and related to the problem of finding the automorphism group of the graph. Perhaps the most well known state-of-the art implementation for finding the automorphism group is Nauty. However, Nauty is particularly susceptible to poor performance on star configurations, where the spokes of the star are isomorphic with each other. In this work, I present an algorithm that explodes these star configurations, reducing the problem to a sequence of simpler automorphism group calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا