ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear Ignition of White Dwarf Stars by Relativistic Encounters with Rotating Intermediate Mass Black Holes

52   0   0.0 ( 0 )
 نشر من قبل Patrick Christopher Fragile
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from general relativistic calculations of nuclear ignition in white dwarf stars triggered by near encounters with rotating intermediate mass black holes with different spin and alignment parameters. These encounters create thermonuclear environments characteristic of Type Ia supernovae capable of producing both calcium and iron group elements in arbitrary ratios, depending primarily on the proximity of the interaction which acts as a strong moderator of nucleosynthesis. We explore the effects of black hole spin and spin-orbital alignment on burn product synthesis to determine whether they might also be capable of moderating reactive flows. When normalized to equivalent impact penetration, accounting for frame dragging corrections, the influence of spin is weak, no more than 25% as measured by nuclear energy release and mass of burn products, even for near maximally rotating black holes. Stars on prograde trajectories approach closer to the black hole and produce significantly more unbound debris and iron group elements than is possible by encounters with nonrotating black holes or by retrograde orbits, at more than 50% mass conversion efficiency. The debris contains several radioisotopes, most notably Ni56, made in amounts that produce sub-luminous (but still observable) light curves compared to branch-normal SNe Ia.

قيم البحث

اقرأ أيضاً

We present results from general relativistic calculations of the tidal disruption of white dwarf stars from near encounters with intermediate mass black holes. We follow the evolution of 0.2 and $0.6 M_odot$ stars on parabolic trajectories that appro ach $10^3$ - $10^4 M_odot$ black holes as close as a few Schwarzschild radii at periapsis, paying particular attention to the effect tidal disruption has on thermonuclear reactions and the synthesis of intermediate to heavy ion elements. These encounters create diverse thermonuclear environments characteristic of Type I supernovae and capable of producing both intermediate and heavy mass elements in arbitrary ratios, depending on the strength (or proximity) of the interaction. Nuclear ignition is triggered in all of our calculations, even at weak tidal strengths $beta sim 2.6$ and large periapsis radius $R_P sim 28$ Schwarzschild radii. A strong inverse correlation exists between the mass ratio of calcium to iron group elements and tidal strength, with $beta lesssim 5$ producing predominately calcium-rich debris. At these moderate to weak interactions, nucleosynthesis is not especially efficient, limiting the total mass and outflows of calcium group elements to $< 15$% of available nuclear fuel. Iron group elements however continue to be produced in greater quantity and ratio with increasing tidal strength, peaking at $sim 60$% mass conversion efficiency in our closest encounter cases. These events generate short bursts of gravitational waves with characteristic frequencies 0.1-0.7 Hz and strain amplitudes $0.5times10^{-22}$ - $3.5times10^{-22}$ at 10 Mpc source distance.
The existence of supermassive black holes lurking in the centers of galaxies and of stellar binary systems containing a black hole with a few solar masses has been established beyond reasonable doubt. The idea that black holes of intermediate masses ($sim 1000$ msun) may exist in globular star clusters has gained credence over recent years but no conclusive evidence has been established yet. An attractive feature of this hypothesis is the potential to not only disrupt solar-type stars but also compact white dwarf stars. In close encounters the white dwarfs can be sufficiently compressed to thermonuclearly explode. The detection of an underluminous thermonuclear explosion accompanied by a soft, transient X-ray signal would be compelling evidence for the presence of intermediate mass black holes in stellar clusters. In this paper we focus on the numerical techniques used to simulate the entire disruption process from the initial parabolic orbit, over the nuclear energy release during tidal compression, the subsequent ejection of freshly synthesized material and the formation process of an accretion disk around the black hole.
We describe ongoing searches for intermediate-mass black holes with M_BH ~ 100-10^5 M_sun. We review a range of search mechanisms, both dynamical and those that rely on accretion signatures. We find that dynamical and accretion signatures alike point to a high fraction of 10^9-10^10 M_sun galaxies hosting black holes with M_BH<10^5 M_sun. In contrast, there are no solid detections of black holes in globular clusters. There are few observational constraints on black holes in any environment with M_BH ~ 100-10^4 M_sun. Considering low-mass galaxies with dynamical black hole masses and constraining limits, we find that the M_BH-sigma_* relation continues unbroken to M_BH~10^5 M_sun, albeit with large scatter. We believe the scatter is at least partially driven by a broad range in black hole mass, since the occupation fraction appears to be relatively high in these galaxies. We fold the observed scaling relations with our empirical limits on occupation fraction and the galaxy mass function to put observational bounds on the black hole mass function in galaxy nuclei. We are pessimistic that local demographic observations of galaxy nuclei alone could constrain seeding mechanisms, although either high-redshift luminosity functions or robust measurements of off-nuclear black holes could begin to discriminate models.
Observational evidence has been mounting for the existence of intermediate mass black holes (IMBHs, 10^2-10^5 Msun), but observing them at all, much less constraining their masses, is very challenging. In one theorized formation channel, IMBHs are th e seeds for supermassive black holes in the early universe. As a result, IMBHs are predicted to exist in the local universe in dwarf galaxies, as well as wandering in more massive galaxy halos. However, these environments are not conducive to the accretion events or dynamical signatures that allow us to detect IMBHs. The Laser Interferometer Space Antenna (LISA) will demystify IMBHs by detecting the mergers of these objects out to extremely high redshifts, while measuring their masses with extremely high precision. These observations of merging IMBHs will allow us to constrain the formation mechanism and subsequent evolution of massive black holes, from the dark ages to the present day, and reveal the role that IMBHs play in hierarchical galaxy evolution.
Current theoretical models predict a mass gap with a dearth of stellar black holes (BHs) between roughly $50,M_odot$ and $100,M_odot$, while, above the range accessible through massive star evolution, intermediate-mass BHs (IMBHs) still remain elusiv e. Repeated mergers of binary BHs, detectable via gravitational wave emission with the current LIGO/Virgo/Kagra interferometers and future detectors such as LISA or the Einstein Telescope, can form both mass-gap BHs and IMBHs. Here we explore the possibility that mass-gap BHs and IMBHs are born as a result of successive BH mergers in dense star clusters. In particular, nuclear star clusters at the centers of galaxies have deep enough potential wells to retain most of the BH merger products after they receive significant recoil kicks due to anisotropic emission of gravitational radiation. We show that a massive stellar BH seed can easily grow to $sim 10^3 - 10^4,M_odot$ as a result of repeated mergers with other smaller BHs. We find that lowering the cluster metallicity leads to larger final BH masses. We also show that the growing BH spin tends to decrease in magnitude with the number of mergers, so that a negative correlation exists between final mass and spin of the resulting IMBHs. Assumptions about the birth spins of stellar BHs affect our results significantly, with low birth spins leading to the production of a larger population of massive BHs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا