ﻻ يوجد ملخص باللغة العربية
We present results from general relativistic calculations of nuclear ignition in white dwarf stars triggered by near encounters with rotating intermediate mass black holes with different spin and alignment parameters. These encounters create thermonuclear environments characteristic of Type Ia supernovae capable of producing both calcium and iron group elements in arbitrary ratios, depending primarily on the proximity of the interaction which acts as a strong moderator of nucleosynthesis. We explore the effects of black hole spin and spin-orbital alignment on burn product synthesis to determine whether they might also be capable of moderating reactive flows. When normalized to equivalent impact penetration, accounting for frame dragging corrections, the influence of spin is weak, no more than 25% as measured by nuclear energy release and mass of burn products, even for near maximally rotating black holes. Stars on prograde trajectories approach closer to the black hole and produce significantly more unbound debris and iron group elements than is possible by encounters with nonrotating black holes or by retrograde orbits, at more than 50% mass conversion efficiency. The debris contains several radioisotopes, most notably Ni56, made in amounts that produce sub-luminous (but still observable) light curves compared to branch-normal SNe Ia.
We present results from general relativistic calculations of the tidal disruption of white dwarf stars from near encounters with intermediate mass black holes. We follow the evolution of 0.2 and $0.6 M_odot$ stars on parabolic trajectories that appro
The existence of supermassive black holes lurking in the centers of galaxies and of stellar binary systems containing a black hole with a few solar masses has been established beyond reasonable doubt. The idea that black holes of intermediate masses
We describe ongoing searches for intermediate-mass black holes with M_BH ~ 100-10^5 M_sun. We review a range of search mechanisms, both dynamical and those that rely on accretion signatures. We find that dynamical and accretion signatures alike point
Observational evidence has been mounting for the existence of intermediate mass black holes (IMBHs, 10^2-10^5 Msun), but observing them at all, much less constraining their masses, is very challenging. In one theorized formation channel, IMBHs are th
Current theoretical models predict a mass gap with a dearth of stellar black holes (BHs) between roughly $50,M_odot$ and $100,M_odot$, while, above the range accessible through massive star evolution, intermediate-mass BHs (IMBHs) still remain elusiv