ﻻ يوجد ملخص باللغة العربية
We report the interaction between the silicene nanosheet (Si-NS) and volatile organic compounds (VOCs) released from the pear fruit (Pyrus communis) in ripened and over-ripened stages using density functional theory (DFT) technique. The geometric stability of Si-NS is studied from the phonon band structure. Further, the electronic property of Si-NS is studied from the energy band gap structure, and the energy gap is found to be 0.46 eV, which exhibits semiconductor property. The outcomes infer that the adsorption of volatiles released from the pear fruit on silicene nanosheet is in the following order hexyl acetate $rightarrow$ butyl acetate $rightarrow$ butyl butyrate in the ripened stage whereas in the over-ripened stage the adsorption sequence is noticed to be acetic acid $rightarrow$ ethyl acetate $rightarrow$ 1-butanol. The adsorption property of pear fruit volatiles on silicene nanosheet is documented with the adsorption energy, average energy gap changes, and Bader charge transfer. Moreover, the adsorption of VOCs on silicene nanosheet is also explored using the energy band structure, electron density along with the adsorption sites and density of states (DOS) spectrum. Besides, the findings reveal that the silicene nanosheet can be used to discriminate the quality of pear fruit.
Using first-principles calculation, geometrical stability together with electronic properties of graphdiyne nanosheet (Gdn-NS) is investigated. The structural stability of Gdn-NS is established with the support of phonon band structure and cohesive e
Sodium, magnesium and aluminum adatoms, which, respectively, possess one, two and three valence electrons in terms of 3s, $3s^2$, and ($3s^2$, 3p) orbitals, are very suitable for helping us understand the adsorption-induced diverse phenomena. In this
We investigate the adsorption of cobalt phthalocyanine (CoPc) molecules on a thin layer of cobalt oxide grown on Ir(100). To that end we compare the results of low-temperature scanning tunneling microscopy (STM) with those of ab-initio density functi
The adsorption characteristics of alkali, alkaline earth and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon, are analyzed by means of first-principles calculations. In contrast to graphene, interaction between th
The electronic structure modifications of WSe2 upon NO2-adsorption at room and low temperatures were studied by means of photoelectron spectroscopy. We found only moderate changes in the electronic structure, which are manifested as an upward shift o