ﻻ يوجد ملخص باللغة العربية
In this note we study the conversion of nucleons into deltas induced by a strong magnetic field in ultraperipheral relativistic heavy ion collisions. The interaction Hamiltonian couples the magnetic field to the spin operator, which, acting on the spin part of the wave function, converts a spin 1/2 into a spin 3/2 state. We estimate this transition probability and calculate the cross section for delta production. This process can in principle be measured, since the delta moves close to the beam and decays almost exclusively into pions. Forward pions may be detected by forward calorimeters.
We discuss the helicity polarization which can be locally induced from both vorticity and helicity charge in non-central heavy ion collisions. Helicity charge redistribution can be generated in viscous fluid and contributes to azimuthal asymmetry of
It is believed that in non-central relativistic heavy ion collisions a very strong magnetic field is formed. There are several studies of the effects of this field, where $vec{B}$ is calculated with the expressions of classical electrodynamics. A qua
The dynamics of baryon-antibaryon annihilation and reproduction ($B{bar B} leftrightarrow 3 M$) is studied within the Parton-Hadron-String Dynamics (PHSD) transport approach for Pb+Pb and Au+Au collisions as a function of centrality from lower Super
Heavy ion collisions provide a unique opportunity to study the nature of X(3872) compared with electron-positron and proton-proton (antiproton) collisions. With the abundant charm pairs produced in heavy-ion collisions, the production of multicharm h
Using the strong electromagnetic fields in peripheral heavy ion collisions gives rise to a number of interesting possibilities of applications in both photon-photon and photon-hadron physics. We look at the theoretical foundations of the equivalent p