ﻻ يوجد ملخص باللغة العربية
Context. 55 Cnc e is a transiting super-Earth orbiting a solar-like star with an orbital period of 17.7 hours. In 2011, using the MOST space telescope, a quasi-sinusoidal modulation in flux was detected with the same period as the planetary orbit. The amplitude of this modulation was too large to be explained as the change in light reflected or emitted by the planet. Aims. The MOST telescope continued to observe 55 Cnc e for a few weeks per year over five years, covering 143 individual transits. This paper presents the analysis of the observed phase modulation throughout these observations and a search for the secondary eclipse of the planet. Methods. The most important source of systematic noise in MOST data is due to stray-light reflected from the Earth, which is modulated with both the orbital period of the satellite and the Earths rotation period. We present a new technique to deal with this source of noise, which we combined with standard detrending procedures for MOST data. We then performed Markov Chain Monte Carlo analyses of the detrended light curves, modeling the planetary transit and phase modulation. Results. We find phase modulations similar to those seen in 2011 in most of the subsequent years; however, the amplitude and phase of maximum light are seen to vary from 113 to 28 ppm and from 0.1 to 3.8 rad. The secondary eclipse is not detected, but we constrain the geometric albedo of the planet to less than 0.47 (2$sigma$). Conclusions. While we cannot identify a single origin of the observed optical modulation, we propose a few possible scenarios. Those include star-planet interaction or the presence of a transiting circumstellar torus of dust. However, a detailed interpretation of these observations is limited by their photometric precision. Additional observations at optical wavelengths could contribute to uncovering the underlying physical processes.
We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2-meter-class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral
55 Cnc e is a transiting super-Earth (radius $1.88rm,R_oplus$ and mass $8rm, M_oplus$) orbiting a G8V host star on a 17-hour orbit. Spitzer observations of the planets phase curve at 4.5 $mu$m revealed a time-varying occultation depth, and MOST optic
We report on new transit photometry for the super-Earth 55 Cnc e obtained with Warm Spitzer/IRAC at 4.5 microns. An individual analysis of these new data leads to a planet radius of 2.21-0.16+0.15 Rearth, in good agreement with the values previously
Context. 55 Cancri hosts five known exoplanets, most notably the hot super-Earth 55 Cnc e, which is one of the hottest known transiting super-Earths. Aims. Due to the short orbital separation and host star brightness, 55 Cnc e provides one of the bes
We present Rossiter-McLaughlin observations of the transiting super-Earth 55 Cnc e collected during six transit events between January 2012 and November 2013 with HARPS and HARPS-N. We detect no radial-velocity signal above 35 cm/s (3-sigma) and conf