ﻻ يوجد ملخص باللغة العربية
We consider Stokes systems in non-divergence form with measurable coefficients and Lions-type boundary conditions. We show that for the Lions conditions, in contrast to the Dirichlet boundary conditions, local boundary mixed-norm $L_{s,q}$-estimates of the spatial second-order derivatives of solutions hold, assuming the smallness of the mean oscillations of the coefficients with respect to the spatial variables in small cylinders. In the un-mixed norm case with $s=q=2$, the result is still new and provides local boundary Caccioppoli-type estimates, which are important in applications. The main challenges in the work arise from the lack of regularity of the pressure and time derivatives of the solutions and from interaction of the boundary with the nonlocal structure of the system. To overcome these difficulties, our approach relies heavily on several newly developed regularity estimates for parabolic equations with coefficients that are only measurable in the time variable and in one of the spatial variables.
We prove the mixed-norm Sobolev estimates for solutions to both divergence and non-divergence form time-dependent Stokes systems with unbounded measurable coefficients having small mean oscillations with respect to the spatial variable in small cylin
This paper is a comprehensive study of $L_p$ estimates for time fractional wave equations of order $alpha in (1,2)$ in the whole space, a half space, or a cylindrical domain. We obtain weighted mixed-norm estimates and solvability of the equations in
This work studies the system of $3D$ stationary Navier-Stokes equations. Several Liouville type theorems are established for solutions in mixed-norm Lebesgue spaces and weighted mixed-norm Lebesgue spaces. In particular, we show that, under some suff
We prove the unique solvability of solutions in Sobolev spaces to the stationary Stokes system on a bounded Reifenberg flat domain when the coefficients are partially BMO functions, i.e., locally they are merely measurable in one direction and have s
We establish the existence and the pointwise bound of the fundamental solution for the stationary Stokes system with measurable coefficients in the whole space $mathbb{R}^d$, $d ge 3$, under the assumption that weak solutions of the system are locall