ترغب بنشر مسار تعليمي؟ اضغط هنا

Polynomial-Time Data Reduction for Weighted Problems Beyond Additive Goal Functions

82   0   0.0 ( 0 )
 نشر من قبل Ren\\'e van Bevern
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Dealing with NP-hard problems, kernelization is a fundamental notion for polynomial-time data reduction with performance guarantees: in polynomial time, a problem instance is reduced to an equivalent instance with size upper-bounded by a function of a parameter chosen in advance. Kernelization for weighted problems particularly requires to also shrink weights. Marx and Vegh [ACM Trans. Algorithms 2015] and Etscheid et al. [J. Comput. Syst. Sci. 2017] used a technique of Frank and Tardos [Combinatorica 1987] to obtain polynomial-size kernels for weighted problems, mostly with additive goal functions. We characterize the function types that the technique is applicable to, which turns out to contain many non-additive functions. Using this insight, we systematically obtain kernelization results for natural problems in graph partitioning, network design, facility location, scheduling, vehicle routing, and computational social choice, thereby improving and generalizing results from the literature.

قيم البحث

اقرأ أيضاً

Dealing with the NP-complete Dominating Set problem on undirected graphs, we demonstrate the power of data reduction by preprocessing from a theoretical as well as a practical side. In particular, we prove that Dominating Set restricted to planar gra phs has a so-called problem kernel of linear size, achieved by two simple and easy to implement reduction rules. Moreover, having implemented our reduction rules, first experiments indicate the impressive practical potential of these rules. Thus, this work seems to open up a new and prospective way how to cope with one of the most important problems in graph theory and combinatorial optimization.
Given an undirected graph with edge weights and a subset $R$ of its edges, the Rural Postman Problem (RPP) is to find a closed walk of minimum total weight containing all edges of $R$. We prove that RPP is WK[1]-complete parameterized by the number a nd cost $d$ of edges traversed additionally to the required ones. Thus, in particular, RPP instances cannot be polynomial-time compressed to instances of size polynomial in $d$ unless the polynomial-time hierarchy collapses. In contrast, denoting by $bleq 2d$ the number of vertices incident to an odd number of edges of $R$ and by $cleq d$ the number of connected components formed by the edges in $R$, we show how to reduce any RPP instance $I$ to an RPP instance $I$ with $2b+O(c/varepsilon)$ vertices in $O(n^3)$ time so that any $alpha$-approximate solution for $I$ gives an $alpha(1+varepsilon)$-approximate solution for $I$, for any $alphageq 1$ and $varepsilon>0$. That is, we provide a polynomial-size approximate kernelization scheme (PSAKS). We experimentally evaluate it on wide-spread benchmark data sets as well as on two real snow plowing instances from Berlin. On instances with few connected components, the number of vertices and required edges is reduced to about $50,%$ at a $1,%$ solution quality loss. We also make first steps towards a PSAKS for the parameter $c$.
We show algorithms for computing representative families for matroid intersections and use them in fixed-parameter algorithms for set packing, set covering, and facility location problems with multiple matroid constraints. We complement our tractability results by hardness results.
We give an asymptotic approximation scheme (APTAS) for the problem of packing a set of circles into a minimum number of unit square bins. To obtain rational solutions, we use augmented bins of height $1+gamma$, for some arbitrarily small number $gamm a > 0$. Our algorithm is polynomial on $log 1/gamma$, and thus $gamma$ is part of the problem input. For the special case that $gamma$ is constant, we give a (one dimensional) resource augmentation scheme, that is, we obtain a packing into bins of unit width and height $1+gamma$ using no more than the number of bins in an optimal packing. Additionally, we obtain an APTAS for the circle strip packing problem, whose goal is to pack a set of circles into a strip of unit width and minimum height. These are the first approximation and resource augmentation schemes for these problems. Our algorithm is based on novel ideas of iteratively separating small and large items, and may be extended to a wide range of packing problems that satisfy certain conditions. These extensions comprise problems with different kinds of items, such as regular polygons, or with bins of different shapes, such as circles and spheres. As an example, we obtain APTASs for the problems of packing d-dimensional spheres into hypercubes under the $L_p$-norm.
Given a graph $G=(V,E)$, two vertices $s,tin V$, and two integers $k,ell$, the Short Secluded Path problem is to find a simple $s$-$t$-path with at most $k$ vertices and $ell$ neighbors. We study the parameterized complexity of the problem with respe ct to four structural graph parameters: the vertex cover number, treewidth, feedback vertex number, and feedback edge number. In particular, we completely settle the question of the existence of problem kernels with size polynomial in these parameters and their combinations with $k$ and $ell$. We also obtain a $2^{O(w)}cdot ell^2cdot n$-time algorithm for graphs of treewidth $w$, which yields subexponential-time algorithms in several graph classes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا