ﻻ يوجد ملخص باللغة العربية
The field-angular dependence of Co-NMR spin-lattice relaxation rate 1/T1 has been measured for a 10% Co-doped single crystal of URhGe. The experiment revealed that spin fluctuations in ferromagnetic (FM) state of URhGe are robust against magnetic field below about 4 T, applied along any direction in the bc crystal plane. This is in clear contrast with the sister compound UCoGe, in which FM spin fluctuations are rapidly suppressed by a tiny applied field along the c axis. We show that such a difference in the character of the spin fluctuations is reflected in their two distinct phase diagrams for the upper critical field Hc2, providing further support to the mechanism of superconductivity mediated by spin fluctuations in these materials.
We review our recent studies on ferromagnetic superconductors, UGe2, URhGe and UCoGe, where the spin-triplet state with the so-called equal spin pairing is realized. We focus on experimental results of URhGe and UCoGe in which the superconductivity o
The discovery in 2000 that the ferromagnetic (FM) compound UGe2 (T_Curie = 52 K at ambient pressure) becomes superconducting under a pressure of P = 1.1 GPa until it enters the paramagnetic (PM) phase above Pc = 1.6 GPa was a surprise. Successive sea
We prepared single crystals in UCo1-xRhxGe and UIr1-xRhxGe systems to establish a complex dU-U-T (dU-U is the shortest interatomic uranium distance and T is temperature) magnetic phase diagram. This recognized a characteristic maximum in magnetic sus
The field-reentrant (field-reinforced) superconductivity on ferromagnetic superconductors is one of the most interesting topics in unconventional superconductivity. The enhancement of effective mass and the induced ferromagnetic fluctuations play key
Magnetoresistivity measurements with fine tuning of the field direction on high quality single crystals of the ferromagnetic superconductor UCoGe show anomalous anisotropy of the upper critical field H_c2. H_c2 for H // b-axis (H_c2^b) in the orthorh