ﻻ يوجد ملخص باللغة العربية
We find that a suppression of the collapse and revival of population inversion occurs in response to insertion of Gaussian quenched disorder in atom-cavity interaction strength in the Jaynes-Cummings model. The character of suppression can be significantly different in the presence of non-Gaussian disorder, which we uncover by studying the cases when the disorder is uniform, discrete, and Cauchy-Lorentz. Interestingly, the quenched averaged atom-photon entanglement keeps displaying nontrivial oscillations even after the population inversion has been suppressed. Subsequently, we show that disorder in atom-cavity interactions helps to avoid sudden death of atom-atom entanglement in the double Jaynes-Cummings model. We identify the minimal disorder strengths required to eliminate the possibility of sudden death. We also investigate the response of entanglement sudden death in the disordered double Jaynes-Cummings model in the presence of atom-atom coupling.
We study the entanglement dynamics of two atoms coupled to their own Jaynes-Cummings cavities in single-excitation space. Here we use the concurrence to measure the atomic entanglement. And the partial Bell states as initial states are considered. Ou
The theory of non-Hermitian systems and the theory of quantum deformations have attracted a great deal of attention in the last decades. In general, non-Hermitian Hamiltonians are constructed by a textit{ad hoc} manner. Here, we study the (2+1) Dirac
The quantum thermalization of the Jaynes-Cummings (JC) model in both equilibrium and non-equilibrium open-system cases is sdudied, in which the two subsystems, a two-level system and a single-mode bosonic field, are in contact with either two individ
We investigate entanglement dynamics of two isolated atoms, each in its own Jaynes-Cummings cavity. We show analytically that initial entanglement has an interesting subsequent time evolution, including the so-called sudden death effect.
In this paper, we present a protocol to engineer upper-bounded and sliced Jaynes-Cummings and anti-Jaynes-Cummings Hamiltonians in cavity quantum electrodynamics. In the upper-bounded Hamiltonians, the atom-field interaction is confined to a subspace