ترغب بنشر مسار تعليمي؟ اضغط هنا

Extreme MRI: Large-Scale Volumetric Dynamic Imaging from Continuous Non-Gated Acquisitions

308   0   0.0 ( 0 )
 نشر من قبل Frank Ong
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Purpose: To develop a framework to reconstruct large-scale volumetric dynamic MRI from rapid continuous and non-gated acquisitions, with applications to pulmonary and dynamic contrast enhanced (DCE) imaging. Theory and Methods: The problem considered here requires recovering hundred-gigabytes of dynamic volumetric image data from a few gigabytes of k-space data, acquired continuously over several minutes. This reconstruction is vastly under-determined, heavily stressing computing resources as well as memory management and storage. To overcome these challenges, we leverage intrinsic three dimensional (3D) trajectories, such as 3D radial and 3D cones, with ordering that incoherently cover time and k-space over the entire acquisition. We then propose two innovations: (1) A compressed representation using multi-scale low rank matrix factorization that constrains the reconstruction problem, and reduces its memory footprint. (2) Stochastic optimization to reduce computation, improve memory locality, and minimize communications between threads and processors. We demonstrate the feasibility of the proposed method on DCE imaging acquired with a golden-angle ordered 3D cones trajectory and pulmonary imaging acquired with a bit-reversed ordered 3D radial trajectory. We compare it with soft-gated dynamic reconstruction for DCE and respiratory resolved reconstruction for pulmonary imaging. Results: The proposed technique shows transient dynamics that are not seen in gating based methods. When applied to datasets with irregular, or non-repetitive motions, the proposed method displays sharper image features. Conclusion: We demonstrated a method that can reconstruct massive 3D dynamic image series in the extreme undersampling and extreme computation setting.



قيم البحث

اقرأ أيضاً

Multi-contrast images are commonly acquired together to maximize complementary diagnostic information, albeit at the expense of longer scan times. A time-efficient strategy to acquire high-quality multi-contrast images is to accelerate individual seq uences and then reconstruct undersampled data with joint regularization terms that leverage common information across contrasts. However, these terms can cause features that are unique to a subset of contrasts to leak into the other contrasts. Such leakage-of-features may appear as artificial tissues, thereby misleading diagnosis. The goal of this study is to develop a compressive sensing method for multi-channel multi-contrast magnetic resonance imaging (MRI) that optimally utilizes shared information while preventing feature leakage. Joint regularization terms group sparsity and colour total variation are used to exploit common features across images while individual sparsity and total variation are also used to prevent leakage of distinct features across contrasts. The multi-channel multi-contrast reconstruction problem is solved via a fast algorithm based on Alternating Direction Method of Multipliers. The proposed method is compared against using only individual and only joint regularization terms in reconstruction. Comparisons were performed on single-channel simulated and multi-channel in-vivo datasets in terms of reconstruction quality and neuroradiologist reader scores. The proposed method demonstrates rapid convergence and improved image quality for both simulated and in-vivo datasets. Furthermore, while reconstructions that solely use joint regularization terms are prone to leakage-of-features, the proposed method reliably avoids leakage via simultaneous use of joint and individual terms, thereby holding great promise for clinical use.
Novel methods for quantitative, transient-state multiparametric imaging are increasingly being demonstrated for assessment of disease and treatment efficacy. Here, we build on these by assessing the most common Non-Cartesian readout trajectories (2D/ 3D radials and spirals), demonstrating efficient anti-aliasing with a k-space view-sharing technique, and proposing novel methods for parameter inference with neural networks that incorporate the estimation of proton density. Our results show good agreement with gold standard and phantom references for all readout trajectories at 1.5T and 3T. Parameters inferred with the neural network were within 6.58% difference from the parameters inferred with a high-resolution dictionary. Concordance correlation coefficients were above 0.92 and the normalized root mean squared error ranged between 4.2% - 12.7% with respect to gold-standard phantom references for T1 and T2. In vivo acquisitions demonstrate sub-millimetric isotropic resolution in under five minutes with reconstruction and inference times < 7 minutes. Our 3D quantitative transient-state imaging approach could enable high-resolution multiparametric tissue quantification within clinically acceptable acquisition and reconstruction times.
Magnetic Resonance Imaging (MRI) of hard biological tissues is challenging due to the fleeting lifetime and low strength of their response to resonant stimuli, especially at low magnetic fields. Consequently, the impact of MRI on some medical applica tions, such as dentistry, continues to be limited. Here, we present three-dimensional reconstructions of ex-vivo human teeth, as well as a rabbit head and part of a cow femur, all obtained at a field strength of only 260 mT. These images are the first featuring soft and hard tissues simultaneously at sub-Tesla fields, and they have been acquired in a home-made, special-purpose, pre-medical MRI scanner designed with the goal of demonstrating dental imaging at low field settings. We encode spatial information with two variations of zero-echo time (ZTE) pulse sequences: Pointwise-Encoding Time reduction with Radial Acquisition (PETRA) and a new sequence we have called Double Radial Non-Stop Spin Echo (DRaNSSE), which we find to perform better than the former. For image reconstruction we employ Algebraic Reconstruction Techniques (ART) as well as standard Fourier methods. A noise analysis of the resulting images shows that ART reconstructions exhibit a higher signal to noise ratio with a more homogeneous noise distribution.
Measurements of breast density have the potential to improve the efficiency and reduce the cost of screening mammography through personalized screening. Breast density has traditionally been evaluated from the dense area in a mammogram, but volumetri c assessment methods, which measure the volumetric fraction of fibro-glandular tissue in the breast, are potentially more consistent and physically sound. The purpose of the present study is to evaluate a method for measuring the volumetric breast density using photon-counting spectral tomosynthesis. The performance of the method was evaluated using phantom measurements and clinical data from a small population (n=18). The precision was determined to 2.4 percentage points (pp) of volumetric breast density. Strong correlations were observed between contralateral (R^2=0.95) and ipsilateral (R^2=0.96) breast-density measurements. The measured breast density was anti-correlated to breast thickness, as expected, and exhibited a skewed distribution in the range [3.7%, 55%] and with a median of 18%. We conclude that the method yields promising results that are consistent with expectations. The relatively high precision of the method may enable novel applications such as treatment monitoring.
Purpose: Correcting or reducing the effects of voxel intensity non-uniformity (INU) within a given tissue type is a crucial issue for quantitative MRI image analysis in daily clinical practice. In this study, we present a deep learning-based approach for MRI image INU correction. Method: We developed a residual cycle generative adversarial network (res-cycle GAN), which integrates the residual block concept into a cycle-consistent GAN (cycle-GAN). In cycle-GAN, an inverse transformation was implemented between the INU uncorrected and corrected MRI images to constrain the model through forcing the calculation of both an INU corrected MRI and a synthetic corrected MRI. A fully convolution neural network integrating residual blocks was applied in the generator of cycle-GAN to enhance end-to-end raw MRI to INU corrected MRI transformation. A cohort of 30 abdominal patients with T1-weighted MR INU images and their corrections with a clinically established and commonly used method, namely, N4ITK were used as a pair to evaluate the proposed res-cycle GAN based INU correction algorithm. Quantitatively comparisons were made among the proposed method and other approaches. Result: Our res-cycle GAN based method achieved higher accuracy and better tissue uniformity compared to the other algorithms. Moreover, once the model is well trained, our approach can automatically generate the corrected MR images in a few minutes, eliminating the need for manual setting of parameters. Conclusion: In this study, a deep learning based automatic INU correction method in MRI, namely, res-cycle GAN has been investigated. The results show that learning based methods can achieve promising accuracy, while highly speeding up the correction through avoiding the unintuitive parameter tuning process in N4ITK correction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا