ترغب بنشر مسار تعليمي؟ اضغط هنا

Hunting white dwarfs at the center of planetary nebulae

90   0   0.0 ( 0 )
 نشر من قبل Walter Weidmann A
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Gemini-South observations of nine faint and extended planetary nebulae. Using direct images taken with the spectrograph GMOS, we built the $(u - g)$ vs. $(g - r)$ diagrams of the stars in the observed areas which allowed us, also considering their geometrical positions, to identify the probable central stars of the nebulae. Our stellar spectra of seven stars, also taken with GMOS, indicate that four (and probably two more) objects are white dwarfs of the DAO subtype. Moreover, the white dwarf status of the four stars is confirmed by the parameters $ T_{mathrm{eff}}$ and $ log g$ derived with the help of theoretical stellar spectra. Given this evidence, we propose that these hot stars are the central ionizing sources of the nebulae. With this work we hope to help improve the current scarce statistics on central white dwarfs in planetary nebulae.



قيم البحث

اقرأ أيضاً

We present near-infrared (IR) spectra of two planetary nebula (PN) candidates in close lines of sight toward the Galactic center (GC) using the Gemini Near-Infrared Spectrograph (GNIRS) at Gemini North. High-resolution images from radio continuum and narrow-band IR observations reveal ringlike or barrel-shaped morphologies of these objects, and their mid-IR spectra from the Spitzer Space Telescope exhibit rich emission lines from highly-excited species such as [S IV], [Ne III], [Ne V], and [O IV]. We also derive elemental abundances using the Cloudy synthetic models, and find an excess amount of the $s$-process element Krypton in both targets, which supports their nature as PN. We estimate foreground extinction toward each object using near-IR hydrogen recombination lines, and find significant visual extinctions ($A_V > 20$). The distances inferred from the size versus surface brightness relation of other PNe are $9.0pm1.6$ kpc and $7.6pm1.6$ kpc for SSTGC 580183 and SSTGC 588220, respectively. These observed properties along with abundance patterns and their close proximity to Sgr A$^*$ (projected distances $<20$ pc) make it highly probable that these objects are the first confirmed PN objects in the nuclear stellar disk. The apparent scarcity of such objects resembles the extremely low rate of PN formation in old stellar systems, but is in line with the current rate of the sustained star formation activity in the Central Molecular Zone.
148 - J. Debes , K. Walsh , C. Stark 2012
It has long been suspected that metal polluted white dwarfs (types DAZ, DBZ, and DZ) and white dwarfs with dusty disks possess planetary systems, but a specific physical mechanism by which planetesimals are perturbed close to a white dwarf has not ye t been fully posited. In this paper we demonstrate that mass loss from a central star during post main sequence evolution can sweep planetesimals into interior mean motion resonances with a single giant planet. These planetesimals are slowly removed through chaotic excursions of eccentricity that in time create radial orbits capable of tidally disrupting the planetesimal. Numerical N-body simulations of the Solar System show that a sufficient number of planetesimals are perturbed to explain white dwarfs with both dust and metal pollution, provided other white dwarfs have more massive relic asteroid belts. Our scenario requires only one Jupiter-sized planet and a sufficient number of asteroids near its 2:1 interior mean motion resonance. Finally, we show that once a planetesimal is perturbed into a tidal crossing orbit, it will become disrupted after the first pass of the white dwarf, where a highly eccentric stream of debris forms the main reservoir for dust producing collisions. These simulations, in concert with observations of white dwarfs, place interesting limits on the frequency of planetary systems around main sequence stars, the frequency of planetesimal belts, and the probability that dust may obscure future terrestrial planet finding missions.
The photospheres of some white dwarfs are polluted by accretion of material from their surrounding planetary debris. White dwarfs with dust disks are often heavily polluted and high-resolution spectroscopic observations of these systems can be used t o infer the chemical compositions of extrasolar planetary material. Here, we report spectroscopic observation and analysis of 19 white dwarfs with dust disks or candidate disks. The overall abundance pattern very much resembles that of bulk Earth and we are starting to build a large enough sample to probe a wide range of planetary compositions. We found evidence for accretion of Fe-rich material onto two white dwarfs as well as O-rich but H-poor planetary debris onto one white dwarf. In addition, there is a spread in Mg/Ca and Si/Ca ratios and it cannot be explained by differential settling or igneous differentiation. The ratios appear to follow an evaporation sequence. In this scenario, we can constrain the mass and number of evaporating bodies surrounding polluted white dwarfs.
White dwarfs with metal-polluted atmospheres have been studied widely in the context of the accretion of rocky debris from evolved planetary systems. One open question is the geometry of accretion and how material arrives and mixes in the white dwarf surface layers. Using the 3D radiation-hydrodynamics code CO$^5$BOLD, we present the first transport coefficients in degenerate star atmospheres which describe the advection-diffusion of a passive scalar across the surface-plane. We couple newly derived horizontal diffusion coefficients with previously published vertical diffusion coefficients to provide theoretical constraints on surface spreading of metals in white dwarfs. Our grid of 3D simulations probes the vast majority of the parameter space of convective white dwarfs, with pure-hydrogen atmospheres in the effective temperature range 6000-18000 K and pure-helium atmospheres in the range 12000-34000 K. Our results suggest that warm hydrogen-rich atmospheres (DA; $gtrsim$13000 K) and helium-rich atmospheres (DB, DBA; $gtrsim$30000 K) are unable to efficiently spread the accreted metals across their surface, regardless of the time dependence of accretion. This result may be at odds with the current non-detection of surface abundance variations at white dwarfs with debris discs. For cooler hydrogen- and helium-rich atmospheres, we predict a largely homogeneous distribution of metals across the surface within a vertical diffusion timescale. This is typically less than 0.1 per cent of disc lifetime estimates, a quantity which is revisited in this paper using the overshoot results. These results have relevance for studies of the bulk composition of evolved planetary systems and models of accretion disc physics.
128 - A. Danehkar , Q. A. Parker 2014
We have used the Wide Field Spectrograph on the Australian National University 2.3-m telescope to perform the integral field spectroscopy for a sample of the Galactic planetary nebulae. The spatially resolved velocity distributions of the H$alpha$ em ission line were used to determine the kinematic features and nebular orientations. Our findings show that some bulge planetary nebulae toward the Galactic center have a particular orientation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا