ترغب بنشر مسار تعليمي؟ اضغط هنا

The polarimetric imaging mode of VLT/SPHERE/IRDIS I: Description, data reduction and observing strategy

75   0   0.0 ( 0 )
 نشر من قبل Jozua de Boer
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. Polarimetric imaging is one of the most effective techniques for high-contrast imaging and characterization of protoplanetary disks, and has the potential to be instrumental in characterizing exoplanets. VLT/SPHERE contains the InfraRed Dual-band Imager and Spectrograph (IRDIS) with a dual-beam polarimetric imaging (DPI) mode, which offers the capability to obtain linear polarization images at high contrast and resolution. Aims. We aim to provide an overview of IRDIS/DPI and study its optical design to improve observing strategies and data reduction. Methods. For H-band observations of TW Hya, we compare two data reduction methods that correct for instrumental polarization effects in different ways: a minimization of the noise image, and a polarimetric-model-based correction method that we present in Paper II of this study. Results. We use observations of TW Hya to illustrate the data reduction. In the images of the protoplanetary disk around this star we detect variability in the polarized intensity and angle of linear polarization with pointing-dependent instrument configuration. We explain these variations as instrumental polarization effects and correct for these effects using our model-based correction method. Conclusions. IRDIS/DPI has proven to be a very successful and productive high-contrast polarimetric imaging system. However, the instrument performance depends on the specific instrument configuration. We suggest adjustments to future observing strategies to optimize polarimetric efficiency in field tracking mode by avoiding unfavourable derotator angles. We recommend reducing on-sky data with the pipeline called IRDAP that includes the model-based correction method (described in Paper II) to optimally account for the remaining telescope and instrumental polarization effects and to retrieve the true polarization state of the incident light.

قيم البحث

اقرأ أيضاً

Context. Circumstellar disks and self-luminous giant exoplanets or companion brown dwarfs can be characterized through direct-imaging polarimetry at near-infrared wavelengths. SPHERE/IRDIS at the Very Large Telescope has the capabilities to perform s uch measurements, but uncalibrated instrumental polarization effects limit the attainable polarimetric accuracy. Aims. We aim to characterize and correct the instrumental polarization effects of the complete optical system, i.e. the telescope and SPHERE/IRDIS. Methods. We create a detailed Mueller matrix model in the broadband filters Y-, J-, H- and Ks, and calibrate it using measurements with SPHEREs internal light source and observations of two unpolarized stars. We develop a data-reduction method that uses the model to correct for the instrumental polarization effects, and apply it to observations of the circumstellar disk of T Cha. Results. The instrumental polarization is almost exclusively produced by the telescope and SPHEREs first mirror and varies with telescope altitude angle. The crosstalk primarily originates from the image derotator (K-mirror). At some orientations, the derotator causes severe loss of signal (>90% loss in H- and Ks-band) and strongly offsets the angle of linear polarization. With our correction method we reach in all filters a total polarimetric accuracy of <0.1% in the degree of linear polarization and an accuracy of a few degrees in angle of linear polarization. Conclusions. The correction method enables us to accurately measure the polarized intensity and angle of linear polarization of circumstellar disks, and is a vital tool for detecting unresolved (inner) disks and measuring the polarization of substellar companions. We have incorporated the correction method in a highly-automatic end-to-end data-reduction pipeline called IRDAP which is publicly available at https://irdap.readthedocs.io.
We present the first part of our DARTTS-S (Disks ARound TTauri Stars with SPHERE) survey: Observations of 8 TTauri stars which were selected based on their strong (sub-)mm excesses using SPHERE / IRDIS polarimetric differential imaging (PDI) in the J and H bands. All observations successfully detect the disks, which appear vastly different in size, from $approx$80 au in scattered light to $>$400 au, and display total polarized disk fluxes between 0.06% and 0.89% of the stellar flux. For five of these disks, we are able to determine the three-dimensional structure and the flaring of the disk surface, which appears to be relatively consistent across the different disks, with flaring exponents $alpha$ between $approx$1.1 and $approx$1.6. We also confirm literature results w.r.t. the inclination and position angle of several of our disk, and are able to determine which side is the near side of the disk in most cases. While there is a clear trend of disk mass with stellar ages ($approx$1 Myr to $>$10 Myr), no correlations of disk structures with age were found. There are also no correlations with either stellar mass or sub-mm flux. We do not detect significant differences between the J and H bands. However, we note that while a high fraction (7/8) of the disks in our sample show ring-shaped sub-structures, none of them display spirals, in contrast to the disks around more massive Herbig Ae/Be stars, where spiral features are common.
Launching a starshade to rendezvous with the Nancy Grace Roman Space Telescope would provide the first opportunity to directly image the habitable zones of nearby sunlike stars in the coming decade. A report on the science and feasibility of such a m ission was recently submitted to NASA as a probe study concept. The driving objective of the concept is to determine whether Earth-like exoplanets exist in the habitable zones of the nearest sunlike stars and have biosignature gases in their atmospheres. With the sensitivity provided by this telescope, it is possible to measure the brightness of zodiacal dust disks around the nearest sunlike stars and establish how their population compares to our own. In addition, known gas-giant exoplanets can be targeted to measure their atmospheric metallicity and thereby determine if the correlation with planet mass follows the trend observed in the Solar System and hinted at by exoplanet transit spectroscopy data. In this paper we provide the details of the calculations used to estimate the sensitivity of Roman with a starshade and describe the publicly available Python-based source code used to make these calculations. Given the fixed capability of Roman and the constrained observing windows inherent for the starshade, we calculate the sensitivity of the combined observatory to detect these three types of targets and we present an overall observing strategy that enables us to achieve these objectives.
Measuring the orbits of directly-imaged exoplanets requires precise astrometry at the milliarcsec level over long periods of time due to their wide separation to the stars ($gtrsim$10 au) and long orbital period ($gtrsim$20 yr). To reach this challen ging goal, a specific strategy was implemented for the instrument Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE), the first dedicated exoplanet imaging instrument at the Very Large Telescope of the European Southern Observatory (ESO). A key part of this strategy relies on the astrometric stability of the instrument over time. We monitored for five years the evolution of the optical distortion, pixel scale, and orientation to the True North of SPHERE images using the near-infrared instrument IRDIS. We show that the instrument calibration achieves a positional stability of $sim$1 mas over 2$$ field of views. We also discuss the SPHERE astrometric strategy, issues encountered in the course of the on-sky operations, and lessons learned for the next generation of exoplanet imaging instruments on the Extremely Large Telescope being built by ESO.
The protoplanetary disk around the F-type star HD 135344B (SAO 206462) is in a transition stage and shows many intriguing structures both in scattered light and thermal (sub-)millimeter emission which are possibly related to planet formation processe s. We study the morphology and surface brightness of the disk in scattered light to gain insight into the innermost disk regions, the formation of protoplanets, planet-disk interactions traced in the surface and midplane layers, and the dust grain properties of the disk surface. We have carried out high-contrast polarimetric differential imaging (PDI) observations with VLT/SPHERE and obtained polarized scattered light images with ZIMPOL in R- and I-band and with IRDIS in Y- and J-band. The scattered light images reveal with unprecedented angular resolution and sensitivity the spiral arms as well as the 25 au cavity of the disk. Multiple shadow features are discovered on the outer disk with one shadow only being present during the second observation epoch. A positive surface brightness gradient is observed in the stellar irradiation corrected images in southwest direction possibly due to an azimuthally asymmetric perturbation of the temperature and/or surface density by the passing spiral arms. The disk integrated polarized flux, normalized to the stellar flux, shows a positive trend towards longer wavelengths which we attribute to large aggregate dust grains in the disk surface. Part of the the non-azimuthal polarization signal in the Uphi image of the J-band observation could be the result of multiple scattering in the disk. The detected shadow features and their possible variability have the potential to provide insight into the structure of and processes occurring in the innermost disk regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا